Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis.

J Genet Genomics

State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University, Sichuan 6111

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Map-based cloning of plant disease resistance (R) genes is time-consuming. Here, we reported the isolation of blast R gene Pid4 using comparative transcriptomic profiling and genome-wide sequence analysis. Pid4 encodes a coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) protein and is constitutively expressed at diverse developmental stages in the rice variety Digu. The Pid4 protein is localized in both the nucleus and cytoplasm. Introduction of Pid4 into susceptible rice cultivars confers race-specific resistance to leaf and neck blast. Amino acid sequence comparison and blast resistance spectrum tests showed that Pid4 is a novel R gene, different from the previously reported R genes located in the same gene cluster. A Pid4 Indel marker was developed to facilitate the identification of Pid4 in different rice varieties. We demonstrated that a plant R gene can be quickly isolated using transcriptomic profiling coupled with genome-wide sequence analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2018.10.007DOI Listing

Publication Analysis

Top Keywords

transcriptomic profiling
12
blast resistance
8
pid4
8
gene pid4
8
genome-wide sequence
8
sequence analysis
8
gene
5
identification characterization
4
rice
4
characterization rice
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF