Oilseed rape (), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days.
View Article and Find Full Text PDFPhosphorus (P) is an essential macronutrient for the growth and yield of crops. However, there is limited understanding of the regulatory mechanisms of phosphate (Pi) homeostasis, and its impact on growth, development, and yield-related traits in Brassica napus. Here, we identified four NITROGEN LIMITATION ADAPTATION1 (BnaNLA1) genes in B.
View Article and Find Full Text PDFTrehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown.
View Article and Find Full Text PDFUnlabelled: Optimal root system architecture (RSA) is essential for vigorous growth and yield in crops. Plants have evolved adaptive mechanisms in response to low phosphorus (LP) stress, and one of those is changes in RSA. Here, more than five million single-nucleotide polymorphisms (SNPs) obtained from whole-genome re-sequencing data (WGR) of an association panel of 370 oilseed rape ( L.
View Article and Find Full Text PDFUnlabelled: Oilseed rape ( L.; ) is an important oil crop worldwide. However, the genetic mechanisms of adaptations to low phosphate (P) stress are largely unknown.
View Article and Find Full Text PDFPhosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype.
View Article and Find Full Text PDFAdvances in DNA sequencing technologies have drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Important ecological interactions being performed by microbes can be investigated by analyzing the extracellular protein fraction.
View Article and Find Full Text PDFDue to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability.
View Article and Find Full Text PDFGiven the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. , the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering.
View Article and Find Full Text PDFBacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two-component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C-P bond.
View Article and Find Full Text PDFBackground And Aims: Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus.
View Article and Find Full Text PDFPlant root angle determines the vertical and horizontal distribution of roots in the soil layer, which further influences the acquisition of phosphorus (P) in topsoil. Large genetic variability for the lateral root angle (root angle) was observed in a linkage mapping population (TNDH population) and an association panel of whether at a low P (LP) or at an optimal P (OP). At LP, the average root angle of both populations became smaller.
View Article and Find Full Text PDFThe planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive).
View Article and Find Full Text PDFMagnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.
View Article and Find Full Text PDFThe 43rd meeting of the Reference Material Committee of ISO, ISO/REMCO, that was scheduled to take place in Milan, Italy, from 30 June to 3 July 2020 with Accredia, the Italian accreditation body and INRIM, the Italian Metrology Institute as the hosts, was cancelled due to the COVID-19 pandemic. This report shares the details of the important decision that was taken by the ISO Technical Management Board (TMB) in December 2020 to transform ISO/REMCO into an ISO technical committee, ISO/TC 334, . The background that led to the decision is provided as well as the implications of the decision for the future of the development of guidance for the production and use of reference materials.
View Article and Find Full Text PDFBacteroidetes are abundant pathogen-suppressing members of the plant microbiome that contribute prominently to rhizosphere phosphorus mobilisation, a frequent growth-limiting nutrient in this niche. However, the genetic traits underpinning their success in this niche remain largely unknown, particularly regarding their phosphorus acquisition strategies. By combining cultivation, multi-layered omics and biochemical analyses we first discovered that all plant-associated Bacteroidetes express constitutive phosphatase activity, linked to the ubiquitous possession of a unique phosphatase, PafA.
View Article and Find Full Text PDFBackground And Aims: Mineral elements have many essential and beneficial functions in plants. Phosphorus (P) deficiency can result in changes in the ionomes of plant organs. The aims of this study were to characterize the effects of P supply on the ionomes of shoots and roots, and to identify chromosomal quantitative trait loci (QTLs) for shoot and root ionomic traits, as well as those affecting the partitioning of mineral elements between shoot and root in Brassica napus grown with contrasting P supplies.
View Article and Find Full Text PDFBackground: There are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample.
View Article and Find Full Text PDFIn soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often with negative environmental and socio-economic consequences.
View Article and Find Full Text PDFIn soil, bioavailable inorganic orthophosphate is found at low concentrations and thus limits biological growth. To overcome this phosphorus scarcity, plants and bacteria secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave orthophosphate from various organic phosphorus substrates. Using profile hidden Markov modeling approaches, we investigated the abundance of various non specific phosphatases, both acid and alkaline, in metagenomes retrieved from soils with contrasting pH regimes.
View Article and Find Full Text PDFA high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.
View Article and Find Full Text PDFEnviron Microbiol
October 2016
Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions.
View Article and Find Full Text PDF