Publications by authors named "Paula Pongrac"

Background: It has been shown previously that thienobenzo-1,2,3-triazoles exhibit very good selective inhibition toward butyrylcholinesterase (BChE), while the same derivatives converted into salts also display inhibitory activity against acetylcholinesterase (AChE), enzymes relevant to Alzheimer's disease therapy. They show even better BChE inhibition potential than neutral analogs.

Methods: This study presents the synthesis and biological evaluation of a novel series of charged thienobenzo-1,2,3-triazolinium salts (-) as inhibitors of AChE and BChE.

View Article and Find Full Text PDF

: This research reports the synthesis and evaluation of novel charged thienobenzo-triazoles as non-selective cholinesterase inhibitors (AChEs and BChEs), their anti-inflammatory properties, and a computational study. : Fifteen derivatives were created through photochemical cyclization and quaternization of the triazole core. The compounds were tested for AChE and BChE inhibition.

View Article and Find Full Text PDF

Correlative imaging is a powerful tool for revealing information on cell-type structures and their biochemistry, with the potential to inform healthier food choices and improved dietary recommendations. Determination of plant structures and their structural biochemistry advances our understanding of specific structures designed to store different biomolecules within cells and tissues. Compared to the classical biochemical separation techniques, the key advantage of sequential correlative imaging techniques is in relating spatial plant (micro)structures to their biochemistry in a nondestructive manner.

View Article and Find Full Text PDF

This manuscript reports the synthesis and characterization of 19 novel heterostilbene carbamates, designed as selective butyrylcholinesterase (BChE) inhibitors with potential applications in the treatment of neurodegenerative disorders, particularly Alzheimer's disease. The compounds were synthesized from resveratrol analogs, and their structures were confirmed by NMR spectroscopy, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction for selected derivatives (compounds and ). In vitro assays demonstrated high selectivity toward BChE over acetylcholinesterase (AChE), with compound exhibiting exceptional inhibitory activity (IC = 26.

View Article and Find Full Text PDF

Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive ( L.) primary and secondary metabolites have not been fully investigated.

View Article and Find Full Text PDF

Hyperaccumulators within the genus possess many promising genetic and metabolic adaptations that could be potentially exploited to support phytoremediation efforts and/or crop improvement and biofortification. Although hyperaccumulation is very common in this genus, individual species display specific traits as they can accumulate different elements (e.g.

View Article and Find Full Text PDF

Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N.

View Article and Find Full Text PDF

Hyperaccumulators are a group of plant species that accumulate high concentrations of one or more metal(loid)s in their above-ground tissues without showing any signs of toxicity. Several hyperaccumulating species belong to the Brassicaceae family, among them the Cd and Zn hyperaccumulator Noccaea praecox. In this paper, we present de novo transcriptome assembled from two naturally occurring N.

View Article and Find Full Text PDF

The quality of molecular imaging by means of MeV primary ion-induced secondary ion mass spectrometry by coating with gold was evaluated on different reference organic molecules and plant samples. The enhancement of the secondary ion yield was evident for the majority of the studied analytes, reaching the highest values at gold thicknesses between 0.5 and 2 nm, and increased the intensity up to 5-fold for reference samples and >2-fold for specific peaks within the plant sample.

View Article and Find Full Text PDF
Article Synopsis
  • Biofortification of edible produce like sprouts can help alleviate element deficiencies in humans by increasing nutrient content through methods such as soaking grains in mineral-rich solutions.
  • Cold plasma treatment enhances the wettability and water uptake of grains, which may help improve the absorption of essential elements.
  • In studies with common buckwheat grains, while grain-priming significantly increased zinc levels in sprout shoots, cold plasma pre-treatment did not enhance zinc concentration and actually resulted in a decrease compared to primed-only grains, highlighting the need for further research on optimizing these treatments.
View Article and Find Full Text PDF

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development.

View Article and Find Full Text PDF

Olive tree (Olea europaea L.) leaves have recently been recognised as a valuable source in cosmetic and pharmaceutical industry as well as in preparation of health-supporting beverages. Little is known about the element composition of olive leaves and almost nothing about tissue-specific allocation of elements.

View Article and Find Full Text PDF

Silkworm rearing activities ceased in the 1970's in several European countries. Attempts on the re-establishment of ecological and sustainable sericulture in Slovenia and Hungary are ongoing. The aim of the study was to assess the usability of locally adapted mulberry genotypes for sericulture and to estimate connections between leaf compound and silkworm performance parameters.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) exhibit great potential in heavy-metal immobilization in semi-aquatic habitats. Under high heavy-metal stress, however, the role of AMF is limited, and the detoxification mechanism of AMF in heavy metals' stabilization remains unclear. This study investigated the effects of AMF on a wetland plant (Iris pseudacorus) and chromium (Cr) immobilization at different water depths in semi-aquatic habitats with biochar addition.

View Article and Find Full Text PDF

In plants, the response to stress, such as salinity, pathogen attack, drought, high concentration of metals, hyperthermia, and hypothermia, is usually accompanied by potassium ion (K) leakage from the cytosol to the cell wall, mediated by plasma membrane cation conductivity. Stress-induced electrolyte leakage co-occurs with accumulation of reactive oxygen species (ROS) and calcium ions (Ca) and often results in programmed cell death (PCD). The development of X-ray and mass spectrometry (MS) based imaging techniques has enabled insight into the spatial tissue and cell-specific redistribution of major and trace elements during the stress response.

View Article and Find Full Text PDF

Salinity is a growing global concern that affects the yield of crop species, including tomato (). Its wild relative was reported to have halophyte properties. We compared salt resistance of both species during the reproductive phase, with a special focus on sodium localization in the flowers.

View Article and Find Full Text PDF

Phosphorus (P) and zinc (Zn) uptake and its physiological use in plants are interconnected and are tightly controlled. However, there is still conflicting information about the interactions of these two nutrients, thus a better understanding of nutritional homeostasis is needed. The objective of this work was to evaluate responses of photosynthesis parameters, P-Zn nutritional homeostasis and antioxidant metabolism to variation in the P × Zn supply of cotton (Gossypium hirsutum L.

View Article and Find Full Text PDF

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.

View Article and Find Full Text PDF

Common buckwheat ( Moench) and Tartary buckwheat ( (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics.

View Article and Find Full Text PDF

Breeding and engineering of biofortified crops will benefit from a better understanding of bottlenecks controlling micronutrient loading within the seeds. However, few studies have addressed the changes in micronutrient concentrations, localization, and speciation occurring over time. Therefore, we studied spatial patterns of zinc and iron accumulation during grain development in two barley lines with contrasting grain zinc concentrations.

View Article and Find Full Text PDF

Background: Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea.

View Article and Find Full Text PDF

Seed phytic acid reduces mineral bioavailability by chelating minerals. Consumption of common bean seeds with the low phytic acid 1 (lpa1) mutation improved iron status in human trials but caused adverse gastrointestinal effects, presumably due to increased stability of lectin phytohemagglutinin L (PHA-L) compared to the wild type (wt). A hard-to-cook (HTC) defect observed in lpa1 seeds intensified this problem.

View Article and Find Full Text PDF

Shoot zinc (Zn) concentration in is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply.

View Article and Find Full Text PDF

In wheat ( L.), the awns-the bristle-like structures extending from lemmas-are photosynthetically active. Compared to awned cultivars, awnletted cultivars produce more grains per unit area and per spike, resulting in significant reduction in grain size, but their mineral element composition remains unstudied.

View Article and Find Full Text PDF

Lead (Pb) ranks among the most problematic environmental pollutants. Background contamination of soils is nearly ubiquitous, yet plant Pb accumulation is barely understood. In a survey covering 165 European populations of the metallophyte Arabidopsis halleri, several field samples had indicated Pb hyperaccumulation, offering a chance to dissect plant Pb accumulation.

View Article and Find Full Text PDF