Publications by authors named "Jingxin Zhu"

This study elucidates the anti-colorectal cancer (CRC) mechanism of Rosa rugosa cv. Plena polysaccharide RPP1 against AOM/DSS-induced carcinogenesis. Purified via water extraction and chromatography, RPP1 was characterized as an eight-monosaccharide polymer by HPLC.

View Article and Find Full Text PDF

() infection has become one of the most common and severe complications among cancer patients. The impact of γ radiation from radiotherapy on 's growth and virulence is not yet fully understood. In this study, was exposed to γ radiation at a dose of 100 Gy, and its descendants were cultured under normal conditions.

View Article and Find Full Text PDF

The ubiquitin E3 ligase UBE3C promotes the proteasomal degradation of cytosolic proteins and endoplasmic reticulum (ER) membrane proteins. UBE3C is proposed to function downstream of the RNF185/MBRL ER-associated degradation (ERAD) branch, contributing to the ERAD of select membrane proteins. Here, we report that UBE3C facilitates the ERAD of misfolded CFTR, even in the absence of both RNF185 and its functional ortholog RNF5 (RNF5/185).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable.

View Article and Find Full Text PDF

Plantaricin BM-1 is a class IIa bacteriocin produced by BM-1 that has significant antimicrobial activity against food-borne bacteria. In this study, a cell proliferation assay and scanning electron microscopy were used to detect changes in the viability of SW480, Caco-2, and HCT-116 colorectal cancer cells treated with plantaricin BM-1. We found that plantaricin BM-1 significantly reduced the viability of all colorectal cancer cell lines tested, especially that of the SW480 cells.

View Article and Find Full Text PDF

Regenerated silk fibroin (RSF)-based hydrogels are promising biomedical materials due to their biocompatibility and biodegradability. However, the weak mechanical properties and lack of functionality limit their practical applications. Here, we developed a tough and conductive RSF-based double network (DN) gel, consisting of a sonication-induced β-sheet physically crosslinked RSF/S gel as the first network and a hydrophobically associated polyacrylamide/stearyl methacrylate (PAAm/C18) gel as the second network.

View Article and Find Full Text PDF

Waterborne polyurethane has been proven to be an ideal additive for the preparation of hydrogels with excellent mechanical properties. This work reports that a satisfactory adhesion of acrylamide hydrogels can be obtained by introducing a large amount of waterborne polyurethane into system. A series of polyurethane hydrogels was prepared by using one-pot method with acrylamide monomer and 2-hydroxymethyl methacrylate end-modified waterborne polyurethane emulsion.

View Article and Find Full Text PDF

In this work, the potential application of the fluorescence dye Thioflavin-T (ThT), which can specifically bind to amyloid, as a powerful tool for monitoring secondary structural transitions of silk fibroin (SF) induced by pH in low solution concentrations was examined. Results showed that ThT emission intensities substantially increased when pH decreased from 6.8 to 4.

View Article and Find Full Text PDF

In this research, we designed a label-free fluorometric turn-on assay for trypsin and inhibitor screening, based on a spherical cationic gemini surfactant ethylene-bis (dodecyl dimethyl ammonium bromide) (EDAB)/heparin/Nile red (NR) supramolecular assembly system. The introduction of gemini surfactant EDAB as template greatly enhanced its salt resistance and resulted in the supramolecular assemblies with diameters ranging from 20 to 100 nm. The fluorometric assay for trypsin was performed by firstly disassembling with protamine (a heparin-binding protein) and then re-assembling through hydrolysis of protamine.

View Article and Find Full Text PDF

This paper presents a facile and low-cost strategy for fabrication lysozyme-loaded mesoporous silica nanotubes (MSNTs) by using silk fibroin (SF) nanofiber templates. The "top-down method" was adopted to dissolve degummed silk in CaCl/ formic acid (FA) solvent, and the solution containing SF nanofibrils was used for electrospinning to prepare SF nanofiber templates. As SF contains a large number of -OH, -NH and -COOH groups, the silica layer could be easily formed on its surface by the Söber sol-gel method without adding any surfactant or coupling agent.

View Article and Find Full Text PDF

The sex-determining region Y (SRY) gene is a key gene involved in male sex differentiation and development. Patients with 46,XY disorders of sex development related to mutations in the high mobility group (HMG) box typically present with complete gonadal dysgenesis. In this study, we report a case of novel missense mutation c.

View Article and Find Full Text PDF

This paper presents a green method for fabricating dual temperature- and pH-responsive electrospun fibrous mats from an aqueous-based blend poly(-isopropylacrylamide--acrylic acid) (P(NIPAAm--AAc)) and regenerated silk fibroin (RSF) by employing electrospinning technique. P(NIPAAm--AAc) was synthesized by free radical solution polymerization and its low critical solution temperature (LCST) was in the physiological range (38.8 °C).

View Article and Find Full Text PDF

To understand protein structural transition and β-sheet formation is of importance in disparate areas such as silk protein processing and disease related β-amyloid behavior. Herein, GAGSGAGAGSGAGY (GY-14), a tetradecapeptide based on the crystallizable sequence of silk fibroin, was employed as a model peptide of the crystalline regions of silk fibroin. Due to the incorporation of tyrosine (Y), GY-14 was able to reduce Au to Au NPs and further stabilize them without any external reducing or capping reagents to produce GY-14 stabilized Au NPs (GY-14@Au NPs).

View Article and Find Full Text PDF

A single-shot characterization of the temporal contrast of a petawatt laser pulse with a high dynamic-range, is important not only for improving conditions of the petawatt laser facility itself, but also for various high-intensity laser physics experiments, which is still a difficult problem. In this study, a new idea for improving the dynamic-range of a single-shot temporal contrast measurement using novel temporal contrast reduction techniques is proposed. The proof-of-principle experiments applying single stage of pulse stretching, anti-saturated absorption, or optical Kerr effect successfully reduce the temporal contrast by approximately one order of magnitude.

View Article and Find Full Text PDF

A compact and alignment-free device based on transient grating self-referenced spectral interferometry is proposed to realize the temporal profile measurement of femtosecond laser pulses. The entire optical setup is composed of two lenses and two glass plates on a straight line with tubes, thereby avoiding complicated optical alignment and improving the stability and practicality of the device. Two 51.

View Article and Find Full Text PDF

Recently, drug delivery materials have become the hotspot of medical study. Suitable delivery material plays an important role in constructing an excellent drug delivery system. Silk fibroin is a naturally occurring protein polymer with excellent biocompatibility, remarkable mechanical properties, biodegradability and outstanding processability.

View Article and Find Full Text PDF

A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF) and silk-elastin-like protein polymer (SELP), both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core) and outer (shell) layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution.

View Article and Find Full Text PDF

Surface engineering is crucial in the colloidal stability and biocompatibility of nanoparticles (NPs). Protein silk fibroin (SF), which gained interest in biomaterial and regenerative medicine, was used in this study to stabilize gold (Au) NPs. Characterization results from UV-Vis spectroscopy revealed that SF-capped Au NPs (SF-Au NPs) possessed remarkable colloidal stabilities in the pH range of 2 to 11 and salt concentration range of 50mM to 1000 mM.

View Article and Find Full Text PDF

In this paper, regenerated silk fibroin (SF) aqueous solutions were adjusted to a pH of 6.9 by mimicing the condition in the posterior division of silkworm's gland and rheological behavior of solutions was investigated. The electrospinning technique was used to prepare fibers, and non-woven mats of regenerated B.

View Article and Find Full Text PDF