98%
921
2 minutes
20
In this paper, regenerated silk fibroin (SF) aqueous solutions were adjusted to a pH of 6.9 by mimicing the condition in the posterior division of silkworm's gland and rheological behavior of solutions was investigated. The electrospinning technique was used to prepare fibers, and non-woven mats of regenerated B. mori silk fibroin were successfully obtained. The effects of electrospinning parameters on the morphology and diameter of regenerated silk fibers were investigated by orthogonal design. Statistical analysis showed that voltage, the concentration of regenerated SF solutions and the distance between tip and collection plate were the most dominant parameters to fiber morphology, diameter and diameter distribution, respectively. An optimal electrospinning condition was obtained in producing uniform cylindrical fibers with an average diameter of 1300nm. It was as follows: the concentration 30%, voltage 40kV, distance 20cm. The structure of electrospun mats was characterized by Raman spectroscopy (RS), wide-angle X-ray diffraction (WAXD) and modulated differential scanning calorimetry (MDSC). It was found that electrospun mats were predominantly random coil/silk I structure, and the transition to silk II (beta-sheet) rich structure should be further explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2007.06.006 | DOI Listing |
Macromol Biosci
September 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.
Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea.
Electrospun nanofibrous mats from bovine, porcine, and fish gelatin were systematically fabricated at varying concentrations (15, 20, 25, and 30 wt.%) to investigate the influence of molecular characteristics on morphology, crystallinity, mechanical properties, thermal behavior, and solubility. Optimal ranges of viscosity (0.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30-054 Krakow, Poland.
Integrating carbon nanotubes (CNTs) into electrospun polyvinylidene fluoride (PVDF) fibers is a promising approach for developing conductive and multifunctional materials. This study systematically compared two CNT deposition techniques, electrophoretic deposition (EPD) and dip coating (DC), in terms of their effectiveness in modifying the surface of aligned electrospun PVDF mats. Morphological characterization revealed that EPD produced more homogeneous and compact CNT coatings.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
Institute of Atmospheric Pollution Research (IIA), National Research Council (CNR), Montelibretti, 00010 Rome, Italy.
In this study, we investigate the effect of varying the loading of molecularly imprinted polymer nanoparticles (MIP-NPs) on the morphology and sensing performance of electrospun nanofibres for the selective detection of linalool, a representative plant-emitted monoterpene. The proposed strategy combines two synergistic technologies: molecular imprinting, to introduce chemical selectivity, and electrospinning, to generate high-surface-area nanofibrous sensing layers with tuneable architecture. Linalool-imprinted MIP-NPs were synthesized via precipitation polymerization using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA), yielding spherical particles with an average diameter of ~135 nm.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
Growing environmental concerns over plastic waste have recently spurred interest in degradable polymers. Among these, polyesters are considered promising candidates due to the hydrolyzable nature of their ester linkages. While the degradation behavior of aliphatic polyesters, known for their relatively high degradability, has been extensively studied with a focus on aggregation structures, our understanding of aromatic polyesters, which exhibit much lower degradability, remains limited.
View Article and Find Full Text PDF