Recently, radioactive pollutants have garnered significant attention within the realms of environmental science and public safety, such as nuclear energy (, uranium), radiation therapy (, I), and earthquake monitoring (, radon), exerting multifaceted impacts on human health and ecosystems. Therefore, the development of accurate detection technologies for key radioactive elements is of paramount importance and is also an important guarantee for ensuring public safety and comprehensively promoting harmonious coexistence between humans and nature. Luminescent probes represent a class of detection methods for radioactive elements, characterized by high sensitivity, simplicity, and visualization.
View Article and Find Full Text PDFSingle-nanoparticle electrochemiluminescence (ECL) imaging is a promising technique for investigating surface dynamics and cellular processes. However, due to the low luminescence intensity of individual particles, most current approaches utilize luminescent materials such as ruthenium bipyridine or luminol derivatives. Quantum dot-based single-nanoparticle ECL imaging, however, remains less explored.
View Article and Find Full Text PDFIn-depth study of the components of polymyxins is the key to controlling the quality of this class of antibiotics. Similarities and variations of components present significant analytical challenges. A two-dimensional (2D) liquid chromatography-mass spectrometr (LC-MS) method was established for screening and comprehensive profiling of compositions of the antibiotic colistimethate sodium (CMS).
View Article and Find Full Text PDFCellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force .
View Article and Find Full Text PDFSubcellular metabolomics analysis is crucial for understanding intracellular heterogeneity and accurate drug-cell interactions. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieving this goal. To address this challenge, we propose an artificial intelligence-assisted subcellular mass spectrometry imaging (AI-SMSI) strategy with image segmentation.
View Article and Find Full Text PDFChem Biomed Imaging
November 2023
Developing an imaging method with micrometer-to-subcellular resolution is of great significance for visualizing biological samples of different sizes. The label-free and high-throughput mass spectrometry imaging (MSI) technology has shown potential in the implementation of this view. Despite many improvements in MSI witnessed over the past decades, it remains a challenge to achieve a flexible resolution from micrometer down to subcellular level with high detection sensitivity.
View Article and Find Full Text PDFThe World Health Organization has reported radioactive Rn gas as the second leading cause of lung cancer and gives an extreme limit to indoor Radon (Rn) concentration as 100 Bq/m. To realize rapid and accurate Rn monitoring, we report an efficient visualized electrochemiluminescence (ECL) device for Rn detection with the lowest limit of detection (0.9 Bq/m/3.
View Article and Find Full Text PDFAnal Chem
February 2022
Owing to the characteristics of high throughput, high flexibility, and convenient separation of the sensing and reporting reactions, the bipolar electrode (BPE) shows great potential in clinical analysis. However, there are some difficulties in the combination of BPEs and multiplex electrochemiluminescence (ECL) biosensing, such as the need for small sample consumption, multistep operations, and separated sample loading. In this paper, a microfluidic BPE array chip was fabricated toward multiplex detection of cancer biomarkers.
View Article and Find Full Text PDFA label-free and fast approach for positive electrochemiluminescence (ECL) imaging of single cells by bipolar nanoelectrode array is proposed. The reduction of oxygen at a platinized gold nanoelectrode array in a closed bipolar electrochemical system is coupled with an oxidative ECL process at the anodic side. For elevating the ECL imaging contrast of single cells, a driving voltage of -2.
View Article and Find Full Text PDFAggregation-induced emission (AIE) active Pdots are attractive nanomaterials applied in electrochemiluminescence (ECL) fields, while the irreversible redox reaction of these Pdots is a prevailing problem, resulting in instability of ECL emission. Herein, we first designed and synthesized an AIE-active Pdot with reversible redox property, which contains a tetraphenylethene derivate and benzothiadiazole (BT) to achieve stable ECL emission. BT has a good rigid structure with excellent electrochemical behaviors, which is beneficial for avoiding the destruction of the conjugated structure as much as possible during the preparation of Pdots, thus maintaining good redox property.
View Article and Find Full Text PDFCollective cell migration plays a key role in tissue repair, metastasis, and development. Cellular tension is a vital mechanical regulator during the force-driven cell movements. However, the contribution and mechanism of cell-cell force interaction and energetic costs during cell migration are yet to be understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
An approach to the design of iridium(III)-contained polytetraphenylethene Pdots that could exhibit highly efficient electrochemiluminescence (ECL) was proposed. The relationships of ECL performance between the iridium complex-embedded and end-capped aggregation-induced emission (AIE) active Pdots in aqueous media were investigated for the first time. The iridium complexes with cyclometalated ligand 6-phenylphenanthridine (pphent) were incorporated into the copolymers by either embedding (, ) or end-capping () into the backbone an ancillary 2,2'-bipyridine (bpy) ligand.
View Article and Find Full Text PDFNanoelectrode arrays have been widely used in electroanalytical applications. The challenge is to develop low-cost and simple approaches to the fabrication of superuniform and ultrasmall nanoelectrode arrays for improving analytical performance and imaging resolution. Here, superuniform and high-density gold nanoelectrode arrays with tunable electrode diameters and interelectrode distances have been fabricated by electrodeposition, followed by a simple mechanical polishing process.
View Article and Find Full Text PDFWe report a GNR-assisted NIR-activated tool that could open TRPV1 ion channels and regulate apoptotic protein expression, thereby inducing cell apoptosis, which might be an effective approach for cancer therapy.
View Article and Find Full Text PDFThe aggregation-induced electrochemiluminescence (AIECL) of polyfluorene derivative nanoparticles containing tetraphenylethylene (TPE) in aqueous media is reported in this work. The TPE unit limits the intramolecular free rotation of phenyl rings, as well as the π-π stacking interactions of molecules, which significantly enhances ECL signal of the polyfluorene nanoparticles. With co-reactants of tri-n-propylamine (TPrA) and SO, the copolymer nanoparticles show visualized ECL emissions at both positive and negative potentials.
View Article and Find Full Text PDFThis paper describes an electrochemiluminescence resonance energy transfer (ECL-RET) system using Ru(bpy)-doped silica nanoparticles (RuSi NPs) as the ECL donor and hollow Au nanocages as the ECL acceptor. Tetrahedron DNA (TD) was used to construct the biosensing interface and control the distance (4.8 nm) between the ECL donor-acceptor pairs.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is a crucial label-free method to distinguish the localization patterns in single cells. MALDI-TOF MS and ToF-SIMS are now bearing the responsibility. However, MALDI-TOF MS is limited to micron spatial resolution and ToF-SIMS suffers from severe molecular fragmentation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2018
Noble metal nanoparticles are promising catalysts in electrochemical reactions, while understanding the relationship between the structure and reactivity of the particles is important to achieve higher efficiency of electrocatalysis, and promote the development of single-molecule electrochemistry. Electrogenerated chemiluminescence (ECL) was employed to image the catalytic oxidation of luminophore at single Au, Pt, and Au-Pt Janus nanoparticles. Compared to the monometal nanoparticles, the Janus particle structure exhibited enhanced ECL intensity and stability, indicating better catalytic efficiency.
View Article and Find Full Text PDFA paper-based SERS test strip combining strengths of paper chip and Raman active substrate was demonstrated to overcome challenges in spectroscopic sensing of complicated samples and realize quantitative detection of disease markers in whole blood. The precisely controlled Au NPs were not only capable of generating condensed hot spots on the fibers, but also enhanced the size exclusion effect of paper, resulting in the novel performance on both SERS detection and sample pretreatment. A biosensor for Mucin-1 is developed by equipping the Au NPs with aptamer.
View Article and Find Full Text PDFSensitive photoelectrochemical (PEC) bioanalysis usually relies on enzyme-assisted signal amplification. This work describes the first proof-of-concept study for liposome-based PEC bioanalysis. Specifically, unilamellar liposomes were prepared and then utilized to carry the enediol-ligands and antibodies within their internal cavities and upon their external surfaces, respectively.
View Article and Find Full Text PDFIn this paper, we propose a generalized concept of microfluidic polydimethylsiloxane (PDMS) on paper (POP) devices, which combines well the merits of paper chips and PDMS chips. First, we optimized the conditions for accurate PDMS spatial patterning on paper, based on screen printing and a high temperature enabled superfast curing technique, which enables PDMS patterning to an accuracy of tens of microns in less than ten seconds. This, in turn, makes it available for seamless, reversible and reliable integration of the resulting paper layer with other PDMS channel structures.
View Article and Find Full Text PDFUsing CdS QD-tagged mercury-specific oligonucleotides, a novel folding-based photoelectrochemical sensor has been successfully fabricated for reagentless and highly sensitive Hg(2+) detection.
View Article and Find Full Text PDFChem Commun (Camb)
September 2014
A disposable paper-based bipolar electrode (BPE) was reported for the first time for the sensitive electrochemiluminescence detection of a prostate specific antigen (PSA).
View Article and Find Full Text PDFIn this paper, a compact and inexpensive light emitting diode induced fluorescence (LED-IF) detector with simplified optical configuration was developed and assembled in an integrated microfluidic device for microscale electrophoresis. The facile detector mainly consisted of an LED, a focusing pinhole, an emission filter and a photodiode, and was encapsulated in the upper layer of an aluminum alloy device with two layers. At the bottom layer, integrated circuit (IC) was assembled to manipulate the voltage for sample injection and separation, LED emission and signal amplifying.
View Article and Find Full Text PDF