Background: Anaerobic ammonia oxidation is a new and efficient biological denitrification process, which has been used in practice. Research on the effect of microplastics (MPs) on anaerobic ammonia oxidation (anammox) process is limited.
Topic: In this study, the effects of short-term exposure of polyethylene terephthalate (PET) with different particle sizes for 12 h on anammox granular sludge (AnGS) and the metabolic mechanism of anaerobic ammonia oxidizing bacteria (AnAOB) were studied.
Pursuing innovative modulation strategies and high asymmetry factors (g) remains a cornerstone in developing circularly polarized luminescence (CPL) materials. Conventional approaches employ either bottom-up chiral small molecule self-assembly or top-down co-assembly of achiral luminophores with supramolecular chiral templates (e.g.
View Article and Find Full Text PDFExcitation wavelength-dependent (Ex-De) chromophores, which exhibit changes in spectral composition with varying excitation wavelengths, have garnered significant interest. However, the pursuit of novel photoluminescence (PL) mechanisms and high luminescence quantum yields is facing huge challenges. Here, we discover that the introduction of a spinacine moiety to 2-(2-hydroxy-5-methylphenyl)benzothiazole, a traditional excited-state intramolecular proton transfer (ESIPT) fluorophore, results in a novel Ex-De PL molecule.
View Article and Find Full Text PDFOrg Biomol Chem
May 2025
An efficient method for converting α-keto amides to α-hydroxy amides has been developed by chemoselective hydrogenation reduction. Utilizing electricity and methanol as both the hydrogen source and solvent, KI and bases participate in the reaction to obtain various α-hydroxy amides (44 cases, up to 100%). The reaction is operationally simple (room temperature, air environment, and undivided cell with constant current electrolysis), avoids the use of traditional reducing agents, is free from metal or transition-metal catalysts, and does not require organic ligands.
View Article and Find Full Text PDFSmall ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.
View Article and Find Full Text PDFAzodicarbonamide (ADA) in flour products is easily converted to semicarbazide which greatly threatens human health. Herein, a long-lasting chemiluminescence (CL)-based biosensor was developed for quantitative point-of-care testing (POCT) of ADA. The threonine (Thr)-functionalized Cu-hemin MOFs (Cu-hemin@Thr) could induce persistent CL of luminol with excellent stability.
View Article and Find Full Text PDFAccess to clean and renewable energy, osmotic energy from salinity gradient difference, for example, is central to the sustainability of human civilization. Despite numerous examples of nanofluidic membranes for osmotic energy conversion, one produced from abundant and renewable biomass resources remains largely unexplored. In this work, cotton-derived cellulose nanocrystals (CNCs) are employed to fabricate a membrane by self-assembly with polyvinyl alcohol (PVA) and subsequent in situ growth of metal-organic framework (MOF), UiO-66-(COOH), to provide an example.
View Article and Find Full Text PDFGiven the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA).
View Article and Find Full Text PDFCarbohydr Res
November 2024
A novel thioxoimidazolidin-linked sialoside bovine serum albumin (WM-BSA) conjugate was synthesized and evaluated as an inhibitor of influenza virus hemagglutinin (HA) and neuraminidase (NA). The multivalent conjugate was prepared by the attachment of thioxoimidazolidin-sialoside monomer (WM) to BSA via adipate linker. Surface plasmon resonance analysis revealed that WM-BSA exhibited potent binding to recombinant influenza HA and NA proteins, with dissociation constants in the submicromolar range.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
An advanced biodegradable packaging film with antimicrobial and fresh-maintaining functions was constructed by incorporating berberine and L-arginine into the starch/polyvinyl alcohol (PVA) film matrix. The film was endowed with a dual antibacterial capacity thanks to the intrinsic antibacterial capability of berberine and cascaded photodynamic sterilization. The aggregated berberine presents an excellent photodynamic activity to generate reactive oxygen species (ROS), which further triggers the NO release from L-arginine.
View Article and Find Full Text PDFAn injectable hydrogel dressing, Zr/Fc-MOF@CuO@FH, was constructed by combing acid-triggered chemodynamic treatment (CDT) with low-temperature photothermal treatment (LT-PTT) to effectively eliminate bacteria without harming the surrounding normal tissues. The Zr/Fc-MOF acts as both photothermal reagent and nanozyme to generate reactive oxygen species (ROS). The CuO nanolayer can be decomposed by the acidic microenvironment of the bacterial infection to release Cu and HO, which not only induces Fenton-like reaction but also enhances the catalytic capability of the Zr/Fc-MOF.
View Article and Find Full Text PDFNat Commun
February 2024
Boroxines are significant structures in the production of covalent organic frameworks, anion receptors, self-healing materials, and others. However, their utilization in aqueous media is a formidable task due to hydrolytic instability. Here we report a water-stable boroxine structure discovered from 2-hydroxyphenylboronic acid.
View Article and Find Full Text PDFPersonal protective masks play critical role in preventing the disease epidemic and resisting pathogenic bacterial infestation. However, large quantities of masks were disposed during COVID-19 epidemic, which caused environmental problem and huge economic burden. Herein, we developed reusable masks with inherent antimicrobial and self-cleaning features under solar irradiation.
View Article and Find Full Text PDFPathogenic bacteria are widely distributed in diverse environments and significantly threaten human health. Point-of-care testing (POCT) is a valuable way for early warnings of bacteria threat. Herein, a chemiluminescence (CL)-based ratiometric sensing platform was constructed for sensitive POCT of bacteria according to a newly designed aggregation-induced emission (AIE) molecule.
View Article and Find Full Text PDFAdv Healthc Mater
September 2023
Targeted killing multidrug-resistant bacteria with high efficiency is urgently needed for the treatment of infection with minimal collateral damage. Herein, a new near-infrared (NIR) fluorescence nanoprobe is designed and synthesized with aggregation-induced emission (AIE) features, which also is excellent reactive oxygen species (ROS) generator. The as-prepared AIE nanoparticles (NPs) present outstanding sterilizing rate on methicillin-resistant Staphylococcus aureus (MRSA) and kanamycin-resistant Escherichia coli (KREC).
View Article and Find Full Text PDFBiosens Bioelectron
July 2023
Misuse and overuse of tetracycline antibiotics (TCs) brings serious issues to ecological environment, food safety and human health. It is urgent to develop unique platform for high efficient identification and removal of TCs. In the present investigation, an effective and simple fluorescence sensor array was constructed based on the interaction between metal ions (Eu and Al) and antibiotics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
The preparation of oseltamivir-bovine serum albumin conjugate (OS-BSA) for use as a multivalent influenza neuraminidase (NA) inhibitor is reported. Briefly, the oseltamivir azidohexyl ester was synthesized and covalently bound via an orthogonal attachment to bicyclononyne-modified BSA using copper-free click chemistry. Primary antiviral assays on NA protein and cellular levels showed that the synthetic multivalent OS-BSA conjugate was a more effective inhibitor than monomeric OS azidohexyl ester.
View Article and Find Full Text PDFSeparation, purification, and identification of glycoproteins are essential for understanding their vital roles in biological and pathological processes. However, glycoproteins are difficult to be captured due to their low abundance, strong interference from non-glycosylated proteins. Here, we report a promising dipeptide-based saccharide recognition platform to selectively enrich two typical glycoproteins, named immunoglobin G (IgG) and horseradish peroxidase (HRP).
View Article and Find Full Text PDFDiscerning tyrosine phosphorylation (pTyr) catalyzed by Tyr kinase is central to the revelation of oncogenic mechanisms and the development of targeted anticancer drugs. Despite some techniques, this goal remains challenging, especially when faced with the interference of multiple phosphorylation events, including serine (pSer) and threonine phosphorylation (pThr). We describe here a functional polymer-modified artificial ion nanochannel, which enables the sensitive and selective recognition of phosphotyrosine (pY) peptide by the distinct ionic current change.
View Article and Find Full Text PDFJ Asian Nat Prod Res
July 2022
The endophytic fungus sp. is known to contain many secondary metabolites, but fatty acid derivatives have rarely been found. In this study, four new fatty acid derivatives (-), together with four known compounds (-), were isolated from sp.
View Article and Find Full Text PDFAggregation-induced enhanced emission (AIEE) molecules have significant applications in optoelectronics, biomedical probes and chemical sensors, and large amounts of AIEE molecules have been reported since the concept of AIEE was proposed. Most aromatic AIEE molecules have complex structures consisting of multiple aromatic rings and/or polycyclic skeletons. In this study, we find that 2-aminophenylboronic acid (2-APBA) with a simple structure is highly emissive in the solid state.
View Article and Find Full Text PDFOne of the neuropathological features of Alzheimer's disease (AD) is the misfolding of amyloid-β to form amyloid aggregates, a process highly associated with biological membranes. However, how molecular chirality affects the amyloid formation on phospholipid surfaces has seldom been reported. Here, l- and d-aspartic acid-modified 1,2-dipalmitoyl--glycero-3-phosphoethanolamine (l-/d-Asp-DPPE) is synthesized to construct chiral phospholipid bilayers.
View Article and Find Full Text PDFSialic acids located at the terminal end of glycans are densely attached to cell surfaces and play crucial and distinctive roles in a variety of physiological and pathological processes, such as neural development, cell-cell interactions, autoimmunity and cancers. However, due to the subtle structural differences of sialic acid species and the complicated composition of glycans, the precise recognition of sialylated glycans is difficult. Here, a fluorescent dynamic response system based on a pyrene-conjugated histidine (PyHis) supramolecular gel is proposed.
View Article and Find Full Text PDF