Halogen Bond-Driven Aggregation-Induced Emission Skeleton: -(3-(Phenylamino)allylidene) Aniline Hydrochloride.

ACS Appl Mater Interfaces

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aggregation-induced emission (AIE) is a unique photophysical process, and its emergence brings a revolutionary change in luminescence. However, AIE-based research has been limited to a few classical molecular skeletons, which is unfavorable for in-depth studies of the photophysical characteristics of AIE and the full exploitation of their potential values. There is an urgent need to develop new skeletons to rise to the challenges of an insufficient number of AIE core structures and difficult modification. Here, we report a novel dumbbell AIE skeleton, in which two phenyls are connected through ()-3-iminoprop-1-en-1-amine. This skeleton shows extremely strong solid-state emission with an absolute quantum yield up to 69.5%, a large Stokes shift, and typical AIE characteristics, which well resolves the challenge of difficult modification and low luminous efficiency of the traditional AIE skeletons. One-step reaction, high yield, and diversified modification endow the skeleton with great scalability from simple to complicated, or from symmetrical to asymmetrical structures, which establishes the applicability of the skeleton in various scenarios. These molecules self-assemble into highly ordered layer-, rod-, petal-, hollow pipe-, or helix-like nanostructures, which contribute to strong AIE emission. Crystallographic data reveal the highly ordered layer structures of the aggregates with different substituents, and a novel halogen bond-driven self-assembly mechanism that restricts intramolecular motion is clearly discovered. Taking advantage of these merits, a full-band emission system from green to red is successfully established, which displays great potential in the construction of light-emitting films and advanced light-emitting diodes. The discovery of this AIE skeleton may motivate a huge potential application value in luminescent materials and lead to hitherto impossible technological innovations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c21073DOI Listing

Publication Analysis

Top Keywords

halogen bond-driven
8
aggregation-induced emission
8
aie
8
difficult modification
8
aie skeleton
8
highly ordered
8
skeleton
6
emission
5
bond-driven aggregation-induced
4
emission skeleton
4

Similar Publications

Coordination bonds are generally stronger than halogen bonds; however, the Jahn-Teller effect in d⁹ Cu(II) and the trans influence of the oxo-ligand in vanadyl (V═O) acetylacetonates can weaken N→Cu/V bonds, bringing them closer to the upper range of halogen bond strength. The study investigates the interactions between transition metal acetylacetonate complexes, M(acac)(L) (M─Cu(II), V(IV) = O; L = amine ligands), and halogen bond (XB)-donor co-formers, particularly 1,4-diiodotetrafluorobenzene (1,4-DITFB). The co-crystallization experiments reveal an unusual ligand displacement phenomenon wherein the expected M(acac)(L)·1,4-DITFB complexes fail to form, instead yielding separate M(acac)·1,4-DITFB and L·1,4-DITFB co-crystals.

View Article and Find Full Text PDF

Engineering of hollow particles with tunable internal structures often requires complicated processes and/or invasive cleavage. Halogen-bond driven 3D confined-assembly of block copolymers has shed light on the engineering of polymer organization along with the fabricating of unique nanostructures. Herein, a family of multilevel hollow-structured particles (e.

View Article and Find Full Text PDF

Despite considerable emphasis on advancing artificial ion channels, progress is constrained by the limited availability of small molecules with the necessary attributes of self-assembly and ion selectivity. In this study, a library of small molecules based on 5-haloisophthalamide and a non-halogenated isophthalamide were examined for their ion transport properties across the lipid bilayer membranes, and the finding demonstrates that the di-hexyl-substituted 5-iodoisophthalamide derivative exhibits the highest level of activity. Furthermore, it was established that the highest active compound facilitates the selective chloride transport that occurs via an antiport-mediated mechanism.

View Article and Find Full Text PDF

Cocrystallization of a -azobenzene dye with volatile molecules, such as pyrazine and dioxane, leads to materials that exhibit at least three different light-intensity-dependent responses upon irradiation with low-power visible light. The halogen-bond-driven assembly of the dye -(-iodoperfluorophenyl)azobenzene with volatile halogen bond acceptors produces cocrystals whose light-induced behavior varies significantly depending on the intensity of the light applied. Low-intensity (<1 mW·cm) light irradiation leads to a color change associated with low levels of → isomerization.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations were performed for a series of supramolecular assemblies containing azobenzene (Azo-X where X = I, Br and H) and alkoxystilbazole subunits to evaluate their electronic, linear and nonlinear optical properties. These assemblies are derivatives of azobenzene, obtained by the substitution of electron-withdrawing and electron-donating groups onto the molecular skeleton. The interaction energies () of all the designed supramolecular complexes (IA-IF, IIA-IIF and IIIA-IIIF) range from -1.

View Article and Find Full Text PDF