Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Density functional theory (DFT) calculations were performed for a series of supramolecular assemblies containing azobenzene (Azo-X where X = I, Br and H) and alkoxystilbazole subunits to evaluate their electronic, linear and nonlinear optical properties. These assemblies are derivatives of azobenzene, obtained by the substitution of electron-withdrawing and electron-donating groups onto the molecular skeleton. The interaction energies () of all the designed supramolecular complexes (IA-IF, IIA-IIF and IIIA-IIIF) range from -1.0 kcal mol to -7.7 kcal mol. The electronic properties of these hydrogen/halogen bond driven supramolecular assemblies such as vertical ionization energies (VIE), HOMO-LUMO energy gap (), excitation energies, density of states (DOS) and natural population (NPA) analyses were also computed. The non-covalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses were also performed to validate the nature of inter- and intra-molecular interactions in these complexes. A substantial enhancement in the first hyperpolarizability () values of the designed supramolecular complexes was observed, which is driven by the charge transfer from the pyridyl moiety of alkoxystilbazole to Azo-X. The highest value of 1.3 × 10 au was observed for the supramolecular complex of -nitro substituted azobenzene with alkoxystilbazole (ID complex). Moreover, the results show that the substitution of electron-withdrawing groups on Azo-X can also bring larger values for such complexes. It was confirmed on a purely theoretical basis that both the types of noncovalent interactions present and the substituent group incorporated influence the nonlinear optical (NLO) response of the systems. Furthermore, the values of the () and () forms were compared to demonstrate the two-way photoinduced switching mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp01498c | DOI Listing |