608 results match your criteria: "South University of Science and Technology of China[Affiliation]"

TSC1 regulates osteoclast podosome organization and bone resorption through mTORC1 and Rac1/Cdc42.

Cell Death Differ

September 2018

Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Reorganization of the podosome into the sealing zone is crucial for osteoclasts (OCLs) to resorb bone, but the underlying mechanisms are unclear. Here, we show that tuberous sclerosis complex 1 (TSC1) functions centrally in OCLs to promote podosome organization and bone resorption through mechanistic target of rapamycin complex 1 (mTORC1) and the small GTPases Rac1/Cdc42. During osteoclastogenesis, enhanced expression of TSC1 downregulates mTORC1 activity.

View Article and Find Full Text PDF

3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals.

Phys Rev Lett

September 2017

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect.

View Article and Find Full Text PDF

Thiazole Imide-Based All-Acceptor Homopolymer: Achieving High-Performance Unipolar Electron Transport in Organic Thin-Film Transistors.

Adv Mater

March 2018

Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China (SUSTC), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.

High-performance unipolar n-type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron-deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide-functionalized thiazoles, 5,5'-bithiazole-4,4'-dicarboxyimide (BTzI) and 2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all-acceptor homopolymers, and the resulting polymer poly(2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide) (PDTzTI) exhibits unipolar n-type transport with a remarkable electron mobility (μ ) of 1.

View Article and Find Full Text PDF

The development of a general catalytic method for the direct and stereoselective construction of cyclopropanes bearing highly congested vicinal all-carbon quaternary stereocenters remains a formidable challenge in chemical synthesis. Here, we report an intramolecular radical cyclopropanation of unactivated alkenes with simple α-methylene group of aldehydes as C1 source via a Cu(I)/secondary amine cooperative catalyst, which enables the single-step construction of bicyclo[3.1.

View Article and Find Full Text PDF

A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces.

J Am Chem Soc

January 2018

Department of Chemical and Biological Engineering, and ‡Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

The electrochemical reduction of nitrogen to ammonia on Au-based catalysts showed a reasonably high Coulombic efficiency. The pathway of this promising reaction, however, is not clear partially due to the lack of information on reaction intermediates. Herein, surface-enhanced infrared absorption spectroscopy (SEIRAS) was employed to study the reaction mechanisms of nitrogen reduction on an Au thin film for the first time.

View Article and Find Full Text PDF

London dispersion, which is the most widespread attractive part of van der Waals force, can be enhanced by introducing a bulky alkyl group to the interacting molecules. However, this strategy will also result in increased steric repulsion. Our theoretical investigation of the attraction-repulsion balance of alkyl groups is implemented, based on an intramolecular configuration torsion system, by varying the sizes and positions of alkyl groups and employing density functional theory (DFT) with or without dispersion correction.

View Article and Find Full Text PDF

Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased.

View Article and Find Full Text PDF

Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating.

Adv Mater

February 2018

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.

Metal corrosion is a long-lasting problem in history and ultrahigh anticorrosion is one ultimate pursuit in the metal-related industry. Graphene, in principle, can be a revolutionary material for anticorrosion due to its excellent impermeability to any molecule or ion (except for protons). However, in real applications, it is found that the metallic graphene forms an electrochemical circuit with the protected metals to accelerate the corrosion once the corrosive fluids leaks into the interface.

View Article and Find Full Text PDF

Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives.

View Article and Find Full Text PDF

Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification.

View Article and Find Full Text PDF

The process of RNA splicing influences many physiological processes, including plant immunity. However, how plant parasites manipulate host RNA splicing process remains unknown. Here we demonstrate that PsAvr3c, an avirulence effector from oomycete plant pathogen Phytophthora sojae, physically binds to and stabilizes soybean serine/lysine/arginine-rich proteins GmSKRPs.

View Article and Find Full Text PDF

Glioma is the most common type of primary brain tumors in the central nervous system (CNS). Migfilin occurs in human glioma and enhances cellular motility via the epidermal growth factor receptor (EGFR) pathway. However, the underlying molecular mechanism is not fully understood.

View Article and Find Full Text PDF

Nickel-catalyzed asymmetric hydrogenation of β-acylamino nitroolefins: an efficient approach to chiral amines.

Chem Sci

September 2017

Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University, Wuhan , 430072 , China . Email:

An efficient approach for synthesizing chiral β-amino nitroalkanes has been developed the Ni-catalyzed asymmetric hydrogenation of challenging β-amino nitroolefins under mild conditions, affording the desired products in excellent yields and with high enantioselectivities. This protocol had good compatibility with the wide substrate scope and a range of functional groups. The synthesis of chiral β-amino nitroalkanes on a gram scale has also been achieved.

View Article and Find Full Text PDF

The two-dimensional boron monolayers were reported to be metallic both in previous theoretical predictions and experimental observations. Unexpectedly, we have first found a family of boron monolayers with the novel semiconducting property as confirmed by the first-principles calculations with the quasi-particle GW approach. We demonstrate that the connected network of hexagonal vacancies dominates the gap opening for both the in-plane s+p and p orbitals, with which various semiconducting boron monolayers are designed to realize the band gap engineering for the potential applications in electronic devices.

View Article and Find Full Text PDF

Positive cooperativity achieved through activating weak non-covalent interactions is common in biological assemblies but is rarely observed in synthetic complexes. Two new molecular tubes have been synthesized and the syn isomer binds DABCO-based organic cations with high orientational selectivity. Surprisingly, the ternary complex with two hosts and one guest shows a high cooperativity factor (α=580), which is the highest reported for synthetic systems without involving ion-pairing interactions.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), which accounts for 85-90% of primary liver cancer, is now the second leading cause of cancer-related mortality worldwide. Here we reported that Aldo-Keto Reductase family 7A isoform 3 (AKR7A3) is frequently down-regulated in HCC, associating with poor overall survival rate, elevated serum α-fetoprotein (AFP) and poor differentiation of HCC. The promoter region of AKR7A3 was detected to be hypermethylated.

View Article and Find Full Text PDF

van der Waals heterojunctions formed by stacking various two-dimensional (2D) materials have a series of attractive physical properties, thus offering an ideal platform for versatile electronic and optoelectronic applications. Here, we report few-layer SnSe/MoS van der Waals heterojunctions and study their electrical and optoelectronic characteristics. The new heterojunctions present excellent electrical transport characteristics with a distinct rectification effect and a high current on/off ratio (∼1 × 10).

View Article and Find Full Text PDF

2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells.

ACS Appl Mater Interfaces

December 2017

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

A series of polymer semiconductors incorporating 2,1,3-benzothiadiazole-5,6-dicarboxylicimide (BTZI) as strong electron-withdrawing unit and an alkoxy-functionalized head-to-head linkage containing bithiophene or bithiazole as highly electron-rich co-unit are designed and synthesized. Because of the strong intramolecular charge transfer characteristics, all three polymers BTZI-TRTOR (P1), BTZI-BTOR (P2), and BTZI-BTzOR (P3) exhibit narrow bandgaps of 1.13, 1.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is the principal inorganic component of bones and teeth and has been widely used as a bone repair material because of its good biocompatibility and bioactivity. Understanding the interactions between proteins and HA is crucial for designing biomaterials for bone regeneration. In this study, we evaluated the effects of atomic-level nano-structured HA (110) surfaces on the adsorption of bone morphogenetic protein-7 (BMP-7) and its derived peptide (KQLNALSVLYFDD) using molecular dynamics and density functional theory methods.

View Article and Find Full Text PDF

A series of oxatub[4]arenes with different alkyl side chains have been synthesized. The conformational interconversion, molecular recognition and macroscopic self-assembly behaviour of oxatub[4]arene derivatives were investigated. The difference in side chains slightly changes the binding affinities, but results in different self-assembly morphologies at the solid state.

View Article and Find Full Text PDF

Although great success has been achieved in selective C-C bond cleavage via the intramolecular radical remote migration process of several carbon-based groups, the development of the radical-based remote vinyl migration process remains a formidable challenge because of the energetically unfavorable process. To address this problem, we report here, for the first time, a novel C-C bond reorganization strategy via an unprecedented radical 1,3-, 1,4-, or 1,5-vinyl migration triggered by various types of fluoroalkylation of alkenes for the efficient realization of 1,2-fluoroalkylalkenylation reaction. This strategy provides an expedient and broadly applicable platform to access skeletally and functionally diverse fluoroalkyl-containing medium- and large-sized cyclic alkenes with excellent chemo-, regio-, and stereoselectivity.

View Article and Find Full Text PDF

The first phosphoric acid catalyzed direct arylation of 2-naphthylamines with iminoquinones for the atroposelective synthesis of axially chiral biaryl amino alcohols has been developed. This reaction constitutes a highly functional-group-tolerant route for the rapid construction of enantioenriched axially chiral biaryl amino alcohols, and is a rare example of 2-naphthylamines acting as nucleophiles in an organocatalytic enantioselective transformation. Furthermore, the products, which feature various halogen atoms, provide access to structurally diverse axially chiral amino alcohols through further transformations.

View Article and Find Full Text PDF

Negative Magnetoresistance without Chiral Anomaly in Topological Insulators.

Phys Rev Lett

October 2017

Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China.

An intriguing phenomenon in topological semimetals and topological insulators is the negative magnetoresistance (MR) observed when a magnetic field is applied along the current direction. A prevailing understanding to the negative MR in topological semimetals is the chiral anomaly, which, however, is not well defined in topological insulators. We calculate the MR of a three-dimensional topological insulator, by using the semiclassical equations of motion, in which the Berry curvature explicitly induces an anomalous velocity and orbital moment.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries.

View Article and Find Full Text PDF

Hydrothermal synthesis of SnQ (Q = Te, Se, S) and their thermoelectric properties.

Nanotechnology

November 2017

State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China. Shenzhen Key Laboratory of Thermoelectric Materials, Department of physics, South University of Science and Technology of C

Lead-free IV-VI semiconductors SnQ (Q = Te, Se, S) are deemed as promising thermoelectric (TE) materials. In this work, we designed a hydrothermal route to selectively synthesize single phase SnTe, SnSe and SnS nanopowders. For all three samples, the phase structure were characterized by x-ray diffraction, SnTe particles with octahedron structure and SnSe/SnS particles with plate-like shape were observed by field emission scanning electron microscopy and transmission electron microscopy, the formation mechanism was discussed in detail.

View Article and Find Full Text PDF