673 results match your criteria: "Max Planck Institute for the Structure and Dynamics of Matter[Affiliation]"
Phys Rev Lett
January 2025
Beihang University, School of Materials Science and Engineering, Beijing 100191, China.
Twistronics, which utilizes the moiré potential to induce exotic excitations in twisted material systems, has garnered significant attention in recent years. In this Letter, using the Bethe-Salpeter calculations based on a continuum model of electronic structures, we explore the optical characteristics of intralayer moiré excitons in twisted bilayer transition metal dichalcogenide heterostructures. We find the Coulomb exchange interactions strongly influence these excitons and the degree of valley polarization and that the splitting between spin-singlet and spin-triplet moiré excitons can be effectively controlled by varying the twist angle.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2025
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom.
A novel formulation is presented for the treatment of electrostatics in the periodic GFN1-xTB tight-binding model. Periodic GFN1-xTB is hindered by the functional form of the second-order electrostatics, which only recovers Coulombic behavior at large interatomic distances and lacks a closed-form solution for its Fourier transform. We address this by introducing a binomial expansion of the Klopman-Ohno function to partition short- and long-range interactions, enabling the use of a generalized Ewald summation for the solution of the electrostatic energy.
View Article and Find Full Text PDFNat Commun
January 2025
National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.
In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band.
View Article and Find Full Text PDFNat Mater
February 2025
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
Science
January 2025
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO) by irradiation with terahertz pulses.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFJ Chem Theory Comput
March 2025
Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Ch 149, Hamburg 22761, Germany.
High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).
View Article and Find Full Text PDFNature
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S3H6, Canada.
Proc Natl Acad Sci U S A
December 2024
Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany.
Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
A quantum-electrodynamics approach is presented to describe the dynamics of electrons that exchange energy with both photon and phonon baths. Our ansatz is a dissipative quantum Liouville equation, cast in the Redfield form, with two driving terms associated with radiative and vibrational relaxation mechanisms, respectively. Remarkably, within the radiative contribution, there is a term that exactly replicates the expression derived from a semiclassical treatment where the power dissipated by the electronic density is treated as the emission from a classical dipole [Bustamante et al.
View Article and Find Full Text PDFBiophys Rev
October 2024
Institute for Nanostructure and Solid-State Physics, University of Hamburg, Hamburg, Germany.
Nat Commun
November 2024
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electronics, a system suitable for integration and capable of generating detectable signals with low pulse energies is needed.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy.
Nonadiabatic molecular dynamics (NAMD) has become an essential computational technique for studying the photophysical relaxation of molecular systems after light absorption. These phenomena require approximations that go beyond the Born-Oppenheimer approximation, and the accuracy of the results heavily depends on the electronic structure theory employed. Sophisticated electronic methods, however, make these techniques computationally expensive, even for medium size systems.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Hamburg Center for Ultrafast Imaging, Universität Hamburg and Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
The recent improvement in experimental capabilities for interrogating and controlling molecular systems with ultrafast coherent light sources calls for the development of theoretical approaches that can accurately and efficiently treat electronic coherence. However, the most popular and practical nonadiabatic molecular dynamics techniques, Tully's fewest-switches surface hopping and Ehrenfest mean-field dynamics, are unable to describe the dynamics proceeding from an initial electronic coherence. While such issues are not encountered with the analogous coupled-trajectory algorithms or numerically exact quantum dynamics methods, applying such techniques necessarily comes with a higher computational cost.
View Article and Find Full Text PDFNat Phys
July 2024
Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart, Germany.
Charge density waves are wave-like modulations of a material's electron density that display collective amplitude and phase dynamics. The interaction with atomic impurities induces strong spatial heterogeneity of the charge-ordered phase. Direct real-space observation of phase excitation dynamics of such defect-induced charge modulation is absent.
View Article and Find Full Text PDFSci Rep
October 2024
European XFEL, 22869, Schenefeld, Germany.
Understanding the mechanisms underlying a stable polarization at the surface of ferroelectric thin films is of particular importance both from a fundamental point of view and to achieve control of the surface polarization itself. In this study, we demonstrate that the X-ray standing wave technique allows the surface polarization profile of a ferroelectric thin film, as opposed to the average film polarity, to be probed directly. The X-ray standing wave technique provides the average Ti and Ba atomic positions, along the out-of-plane direction, near the surface of three differently strained [Formula: see text] thin films.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China.
Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer-Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
A recently developed viewpoint on the fundamentals of density-functional theory for finite interacting spin-lattice systems that centers around the notion of degeneracy regions is presented. It allows for an entirely geometrical description of the Hohenberg-Kohn theorem and v-representability. The phenomena receive exemplification by an Anderson impurity model and other small-lattice examples.
View Article and Find Full Text PDFNano Lett
October 2024
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Nonlinear optical materials of atomic thickness, such as non-centrosymmetric 2H transition metal dichalcogenide monolayers, have a second-order nonlinear susceptibility (χ) whose intensity can be tuned by strain. However, whether χ is enhanced or reduced by tensile strain is a subject of conflicting reports. Here, we grow high-quality MoSe monolayers under controlled biaxial strain created by two different substrates and study their linear and nonlinear optical responses with a combination of experimental and theoretical approaches.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Center for Optical Quantum Technologies and Institute for Quantum Physics, University of Hamburg, 22761 Hamburg, Germany.
Parametric resonances and amplification have led to extraordinary photoinduced phenomena in pump-probe experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present the striking result of parametric amplification in equilibrium. We demonstrate that quantum and thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman mode frequency is twice the cavity mode frequency.
View Article and Find Full Text PDFSmall
July 2025
Department of Physics, Northeastern University, Boston, MA, 02115, USA.
In this short review, an overview of recent progress in deploying advanced characterization techniques is provided to understand the effects of spatial variation and inhomogeneities in moiré heterostructures over multiple length scales. Particular emphasis is placed on correlating the impact of twist angle misalignment, nano-scale disorder, and atomic relaxation on the moiré potential and its collective excitations, particularly moiré excitons. Finally, future technological applications leveraging moiré excitons are discussed.
View Article and Find Full Text PDFNat Commun
August 2024
School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
Epitaxial growth of two-dimensional (2D) materials with uniform orientation has been previously realized by introducing a small binding energy difference between the two locally most stable orientations. However, this small energy difference can be easily disturbed by uncontrollable dynamics during the growth process, limiting its practical applications. Herein, we propose a quasi-equilibrium growth (QEG) strategy to synthesize inch-scale monolayer α-InSe single crystals, a semiconductor with ferroelectric properties, on fluor-phlogopite substrates.
View Article and Find Full Text PDF