98%
921
2 minutes
20
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations. Our results show that (i) gauge invariance can be achieved within correlation-consistent Gaussian basis sets, (ii) the accuracy of QED-CCSD can be enhanced significantly by adding the standard perturbative triples correction without light-matter coupling, and (iii) there is a straightforward way to evaluate the differential expression for the photon occupation number that works in any gauge. The high accuracy and favorable computational scaling of our AFQMC approach will enable a broad range of applications. Besides polaritonic chemistry, the method opens a way to simulate extended QED matter systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c01459 | DOI Listing |
Arthritis Rheumatol
September 2025
Washington DC Veterans Affairs Medical Center; Georgetown University, Washington, DC, USA.
Objective: To evaluate the clinical characteristics, social deprivation, insurance coverage, and medication use across regional subsets of patients with psoriatic arthritis (PsA) in the US.
Methods: A cross-sectional study of PsA patients in the Rheumatology Informatics System for Effectiveness (RISE) registry between January 2020 and March2023 was conducted. Distribution of high disease activity (HDA - RAPID3>12), high comorbidity (RxRisk ≥90 percentile), high Area Deprivation Index (ADI ≥80), insurance coverage, prednisone ≥10mg daily, and all DMARD therapies across geographic regions were evaluated.
ACS Nano
September 2025
Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Capital Region of Denmark 2100, Denmark.
Increasing evidence suggests that active matter exhibits instances of mixed symmetry that cannot be fully described by either polar or nematic formalism. Here, we introduce a minimal model that integrates self-propulsion into the active nematic framework. Our linear stability analyses reveal how self-propulsion shifts the onset of instability, fundamentally altering the dynamical landscape.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK.
Nature uses elongated shapes and filaments to build stable structures, generate motion and allow complex geometric interactions. In this review, we examine the role of biological filaments across different length scales. From the molecular scale, where cytoskeletal filaments provide a robust but dynamic cellular scaffolding, over the scale of cellular appendages like cilia and flagella, to the scale of filamentous microorganisms like cyanobacteria, among the most successful genera on Earth, and even to the scale of elongated animals like worms and snakes, whose motility modes inspire robotic analogues.
View Article and Find Full Text PDF