Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electronics, a system suitable for integration and capable of generating detectable signals with low pulse energies is needed. While current from plasmonic nanoantenna emitters can be driven at optical frequencies, low charge yields have been a significant limitation. In this work we demonstrate that large-scale electrically connected plasmonic nanoantenna networks, when driven in concert, enable charge yields sufficient for single-shot carrier-envelope phase detection at repetition rates exceeding tens of kilohertz. We not only show that limitations in single-shot CEP detection techniques can be overcome, but also demonstrate a flexible approach to optical frequency electronics in general, enabling future applications such as high sensitivity petahertz-bandwidth electric field sampling or logic-circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585632PMC
http://dx.doi.org/10.1038/s41467-024-53788-zDOI Listing

Publication Analysis

Top Keywords

optical frequency
12
frequency electronics
12
phase detection
8
plasmonic nanoantenna
8
charge yields
8
optical
5
on-chip petahertz
4
electronics
4
petahertz electronics
4
electronics single-shot
4

Similar Publications

Photonic Reservoir Computing (RC) systems leverage the complex propagation and nonlinear interaction of optical waves to perform information processing tasks. These systems employ a combination of optical data encoding (in the field amplitude and/or phase), random scattering, and nonlinear detection to generate nonlinear features that can be processed via a linear readout layer. In this work, we propose a novel scattering-assisted photonic reservoir encoding scheme where the input phase is deliberately wrapped multiple times beyond the natural period of the optical waves [0,2π).

View Article and Find Full Text PDF

Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).

Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.

View Article and Find Full Text PDF

Quantification of Normative Human Choriocapillaris Measures Across the Macula.

Invest Ophthalmol Vis Sci

September 2025

Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States.

Purpose: To assess macular choriocapillaris (CC) metrics in healthy volunteers (HVs) without ocular disease and demonstrate CC variations in patients with inherited retinal dystrophies (IRDs) using adaptive optics optical coherence tomography angiography (AO-OCTA).

Methods: Twenty-one HVs and three IRD patients were imaged. Macular variation in 20 HVs in CC metrics (CC density, CC diameter, CC tortuosity, void diameter, void area, lobule count, lobule area, and RPE-CC distance) were assessed by imaging a 28° strip of overlapping AO-OCTA volumes (3° × 3°) from the optic nerve head to the temporal macula.

View Article and Find Full Text PDF

Bandgap-Tailored (BiSb)Se Thin Films Enabling Fast Broadband Near-Infrared Photodetection and Imaging.

Small

September 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic

Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.

View Article and Find Full Text PDF

Oropouche virus (OROV) is emerging as a growing public health concern, with increasing numbers of case, an expanding global spread and the potential for severe clinical outcomes. However, despite the increasing incidence, the clinical features of OROV infections have not yet been thoroughly examined. The present systematic review and meta-analysis aimed to investigate the prevalence of clinical manifestations in OROV infections.

View Article and Find Full Text PDF