98%
921
2 minutes
20
A quantum-electrodynamics approach is presented to describe the dynamics of electrons that exchange energy with both photon and phonon baths. Our ansatz is a dissipative quantum Liouville equation, cast in the Redfield form, with two driving terms associated with radiative and vibrational relaxation mechanisms, respectively. Remarkably, within the radiative contribution, there is a term that exactly replicates the expression derived from a semiclassical treatment where the power dissipated by the electronic density is treated as the emission from a classical dipole [Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)]. Analysis of the distinct contributions to the total radiation shows that the semiclassical emission depends on the coherences, with the remainder of the quantum-electrodynamics driving term determined by the excited populations, thus accounting for the relaxation of eigenstates or incoherent mixed states. This approach is used to investigate the response of the Su-Schrieffer-Heeger model for trans-polyacetylene to both pulsed and continuous laser irradiation. Upon excitation with a short pulse and in the absence of the vibrational mechanism, the conducting band population exhibits a stepwise relaxation, characterized by cycles of exponential decay followed by a transient subradiant state. The latter arises from the collective coupling between Bloch states featuring a quasi-continuum energy spectrum in reciprocal space. The separate examination of the semiclassical dynamics reveals that it is this contribution that is responsible for the collective behavior. If vibrational dissipation is active, following the laser pulse, the excited electrons rapidly populate the minimum of the conduction band, and the emission spectrum shifts to lower frequencies with respect to absorption. Meanwhile, continuous irradiation drives the system to a stationary state with a broad emission spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0240135 | DOI Listing |
J Biomed Opt
September 2025
Fraunhofer Institute for Microelectronic Circuits and Systems IMS, Duisburg, Germany.
Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2025
Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.
View Article and Find Full Text PDFRegulating the electronic structure by doping can promote photoluminescence emission of low-dimensional metal halides for developing white-light-emitting devices. Here, 0D metal halides RbBiCl have achieved a transition from nonluminescence to effective self-trapped excitons (STEs) emission after Sb ion doping at room temperature. The femtosecond transient absorption spectrum reveals the nonradiative recombination was suppressed, whose lifetimes change from 93.
View Article and Find Full Text PDFThe formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.
View Article and Find Full Text PDF