Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order. This is in contrast to adjacent underlaying layers without charge order, where vortex-bound MBSs are observed. Via theoretical simulations, we show that the surface stripe order does not destroy the bulk topology, but it can effectively modify the spatial distribution of MBSs, i.e. it pushes them downward, away from the 2M-WS surface. Our findings demonstrate that the interplay of charge order and topological superconductivity can potentially be used to tune the positions of MBSs, and to explore new states of matter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745157PMC
http://dx.doi.org/10.1093/nsr/nwae312DOI Listing

Publication Analysis

Top Keywords

charge order
16
majorana bound
8
bound states
8
stripe order
8
order
6
mbss
5
stripe charge
4
order interaction
4
interaction majorana
4
states 2m-ws
4

Similar Publications

The coupling of lasers plays an important role in a variety of research activities, from generating high-power lasers to investigating out-of-equilibrium coupled systems. This Letter presents our investigations of Hermitian coupling in arrays of lasers, where it is possible to control both the amplitude and phase of the coupling and generate artificial gauge fields. The Hermitian coupling is demonstrated in three laser array geometries: a square array of 100 lasers with controlled laser coupling for obtaining continuous control over the phase-locked state, a triangular array of 130 lasers with controlled chirality of the lasers, and a ring array of eight lasers with a controlled topological charge.

View Article and Find Full Text PDF

Proposed Five-Electron Charge Quadrupole Qubit.

Phys Rev Lett

August 2025

University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA.

A charge qubit couples to environmental electric field fluctuations through its dipole moment, resulting in fast decoherence. We propose the p-orbital (pO) qubit, formed by the single-electron, p-like valence states of a five-electron Si quantum dot, which couples to charge noise through the quadrupole moment. We demonstrate that the pO qubit offers distinct advantages in quality factor, gate speed, readout, and size.

View Article and Find Full Text PDF

Femtosecond laser excitation of nanometer thin heterostructures comprising a heavy metal and a magnetically ordered material is known to result in the emission of terahertz radiation. However, the nature of the emitted radiation from heavy metal/antiferromagnet heterostructures has sparked debates and controversies in the literature. Here, we unambiguously separate spin and charge contributions from Pt/NiO heterostructures by introducing an unprecedented methodology combining high external magnetic fields with a symmetry analysis of the emitted terahertz polarization.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF