391 results match your criteria: "Korea Electronics Technology Institute[Affiliation]"

Impact of scented candle use on indoor air quality and airborne microbiome.

Sci Rep

March 2025

Department of Occupational Health and Safety, Semyung University, 65 Semyung-ro, Jecheon, Chungcheongbuk-do, 27136, Republic of Korea.

Indoor air quality has become a growing concern worldwide due to its significant impact on human health, particularly in residential environments where people spend most of their time. Many studies have examined particulate matter (PM) in indoor air and indoor bioaerosols. However, there is a significant lack of research on airborne micro-sized bacteria (m-AB) and nano-sized bacterial extracellular vesicles (n-ABE), particularly those produced by common household activities, such as burning scented candles.

View Article and Find Full Text PDF

An Independent UAV-Based Mobile Base Station.

Sensors (Basel)

February 2025

Department of IT Convergence, ICT Polytech Institute of Korea, Kwangju 12777, Republic of Korea.

In disaster scenarios, e.g., earthquakes, tsunamis, and wildfires, communication infrastructure often becomes severely damaged.

View Article and Find Full Text PDF

The demand for fast-charging and high-energy-density energy storage systems necessitates advanced anode materials with enhanced performance. This study introduces hard carbon-encaged tin (Sn) nanodots (HCSN) as a versatile composite anode for lithium-ion and sodium-ion batteries, designed to address the present challenges. HCSN is synthesized via a sol-gel process and controlled thermal reduction; subsequently, the HCSN700 electrode features uniformly distributed Sn nanodots within a robust hard carbon matrix, effectively mitigating volume expansion and enhancing structural stability.

View Article and Find Full Text PDF

Advancements in Chemical Vapor Deposited Carbon Films for Secondary Battery Applications.

Small

March 2025

Department of Materials Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.

Carbon films, synthesized via chemical vapor deposition (CVD), have gained significant attention in secondary battery applications, where stability and capacity are required to be improved for next-generation electronic devices and electric vehicles. Beyond the inherent properties of carbon films, such as high electrical conductivity, mechanical strength, chemical stability, and flexibility, the CVD method provides a high degree of freedom in designing the carbon films in battery applications, enabling conformal coating with structure engineering for modification of its electrical and mechanical properties. In this review, the CVD-grown carbon films are highlighted in the secondary battery applications, enabling them to overcome critical issues, such as volume expansion, sluggish kinetics, and unstable interfaces.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) derived from stem cells offer promising potential for cell-free therapy. However, refining their cargo for precise disease targeting and delivery remains challenging. This study employed chemical reprogramming via dual inhibition of transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) to expand salivary gland basal progenitor cells (sgBPCs).

View Article and Find Full Text PDF

Cation-Deficient LiWO Surface Coating on Ni-Rich Cathodes Materials for Lithium-Ion Batteries.

ACS Appl Mater Interfaces

February 2025

Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.

In the pursuit to increase the energy density of lithium-ion batteries (LIBs), considerable efforts have focused on developing high-capacity cathode materials. While Ni-rich (Ni ≥ 80 at. %) layered cathode materials are considered a viable commercial option, surface engineering is crucial for enhancing their cycle performance for successful implementation in commercial LIBs.

View Article and Find Full Text PDF

The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

HfO-based thin films have garnered significant interest for integrating robust ferroelectricity into next-generation memory and logic chips, owing to their applicability with modern Si device technology. While numerous studies have focused on enhancing ferroelectric properties and understanding their fundamentals, the fabrication of ultrathin HfO-based ferroelectric films has seldom been reported. This study presents the concept of atomic-level stoichiometry control of ferroelectric HfZrO films by examining the molecular-level interactions of precursor molecules in the atomic layer deposition (ALD) process through theoretical calculations.

View Article and Find Full Text PDF

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.

View Article and Find Full Text PDF

The electrical resistivity of conventional metals such as copper is known to increase in thin films as a result of electron-surface scattering, thus limiting the performance of metals in nanoscale electronics. Here, we find an unusual reduction of resistivity with decreasing film thickness in niobium phosphide (NbP) semimetal deposited at relatively low temperatures of 400°C. In films thinner than 5 nanometers, the room temperature resistivity (~34 microhm centimeters for 1.

View Article and Find Full Text PDF

Iron as a Sulfidation-Resistant Current Collector for Negative Electrode in Sulfide-Based All-Solid-Batteries.

Small

February 2025

LiB Materials Research Group, Research Institute of Industrial Technology and Science (RIST), POSCO Global R and D Center, Sondohwahak-ro 100, Yeonsu-gu, Incheon, 21985, Republic of Korea.

The demand for all-solid-state batteries (ASSBs) featuring credible LiPSCl argyrodite (LPSCl) electrolytes is increasing, driving interest in exploring suitable current collectors for ASSBs. Copper (Cu), used as a current collector in traditional lithium-ion batteries, exhibits significant instability in LPSCl-ASSBs. In this study, the effectiveness of iron (Fe) is systematically investigated as an alternative current collector in LPSCl-ASSBs and compare its performance to that of Cu.

View Article and Find Full Text PDF

Strain engineering provides an attractive approach to enhance device performance by modulating the intrinsic electrical properties of materials. This is especially applicable to 2D materials, which exhibit high sensitivity to mechanical stress. However, conventional methods, such as using polymer substrates, to apply strain have limitations in that the strain is temporary and global.

View Article and Find Full Text PDF

A Zn-coordinated porphyrinic artificial solid-electrolyte interphase (αSEI) layer, named [Zn]PP-4COO-(Zn), was developed to improve the reversibility of zinc metal plating/stripping in aqueous zinc-ion batteries (ZIBs). Inspired by nitrogen-terminating sites of biological molecules coordinating and transporting zinc in zinc metabolic processes, the αSEI layer was designed with zinc ions connecting porphyrinic building blocks to form two-dimensional clathrate sheets and stacking -plane sheets along the -axis to allow N cages to align and form porphyrinic N channels for zinc transport. The [Zn]PP-4COO-(Zn) αSEI layer was Zn-conductive and structurally durable during repeated stripping/plating.

View Article and Find Full Text PDF

With the increasing demand for high-performance printed circuit boards (PCBs) in the 6G communication era, dielectric substrate materials must exhibit a low dielectric constant (D), low dielectric loss (D), and high dimensional stability. In this study, a series of bismaleimide-incorporated poly(phenylene ether) resins (PPE-BMI) with varying bismaleimide (BMI) crosslinker contents is developed, exhibiting significantly enhanced dielectric properties and dimensional stability, owing to the restricted polymer chain mobility and increased crosslinking density. Dielectric property measurements reveal that the PPE-BMI resins exhibit low D and D values at frequencies above 100 GHz, while maintaining an excellent dielectric performance even after an 85 °C/85% relative humidity reliability test.

View Article and Find Full Text PDF

Data-Driven Analysis of High-Temperature Fluorocarbon Plasma for Semiconductor Processing.

Sensors (Basel)

November 2024

Electronic Convergence Material and Device Research Center, Korea Electronics Technology Institute (KETI), Seongnam 13509, Republic of Korea.

The semiconductor industry increasingly relies on high aspect ratio etching facilitated by Amorphous Carbon Layer (ACL) masks for advanced 3D-NAND and DRAM technologies. However, carbon contamination in ACL deposition chambers necessitates effective fluorine-based plasma cleaning. This study employs a high-temperature inductively coupled plasma (ICP) system and Time-of-Flight Mass Spectrometry (ToF-MS) to analyze gas species variations under different process conditions.

View Article and Find Full Text PDF

Substantial efforts are dedicated to optimizing the additive dosage in the electrolyte and studying its effect on solid electrolyte interphase (SEI) formation in Li-ion batteries (LIBs). This study reveals that the decomposition characteristics of the additive based on its lithium-ion solvation nature significantly contribute to controlling SEI formation. During SEI formation, the strong lithium-ion solvating additive spontaneously migrates to the negative electrode due to negative charge accumulation on the surface, and SEI reinforcement is feasible by increasing the additive dosage.

View Article and Find Full Text PDF

Desalination techniques using the photothermal effect hold significant potential for producing fresh water from saline or polluted sources due to their low energy consumption. In the case of commercialized carbon materials are related to heat loss resulting from high thermal conductivity, and metal particles still have trouble in commercialization or cost-effectiveness. This is because a photothermal desalination evaporator must simultaneously exhibit high water evaporation performance, excellent energy conversion efficiency, sufficient hydrophilicity, and low heat loss.

View Article and Find Full Text PDF

This study presents the development of a highly robust, pressureless, and void-free silver sinter-bonding technology for power semiconductor packaging. A bimodal silver paste containing silver nanoparticles and sub-micron particles was used, with polymethyl methacrylate (PMMA) as an additive to provide additional thermal energy during sintering. This enabled rapid sintering and the formation of a dense, void-free bonding joint.

View Article and Find Full Text PDF

Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions.

View Article and Find Full Text PDF

Micro-light-emitting diodes offer vibrant colors and energy-efficient performance, holding promise for next-generation inorganic displays. However, their widespread adoption requires the development of cost-effective chips and low-defect pixelation processes. Addressing these challenges, nanorod-light-emitting diodes utilize inkjet and dielectrophoretic assembly techniques.

View Article and Find Full Text PDF

Electrolyte additives are investigated to resolve dendrite growth, hydrogen evolution reaction, and corrosion of Zn metal. In particular, the electrostatic shielding cationic strategy is considered an effective method to regulate deposition morphology. However, it is very difficult for such a simple cationic modification to avoid competitive hydrogen evolution reactions, corrosion, and interfacial pH fluctuations.

View Article and Find Full Text PDF

Speaker recognition is a technology that identifies the speaker in an input utterance by extracting speaker-distinguishable features from the speech signal. Speaker recognition is used for system security and authentication; therefore, it is crucial to extract unique features of the speaker to achieve high recognition rates. Representative methods for extracting these features include a classification approach, or utilizing contrastive learning to learn the speaker relationship between representations and then using embeddings extracted from a specific layer of the model.

View Article and Find Full Text PDF

Densification of the electrode by calendering is essential for achieving high-energy density in lithium-ion batteries. However, Si anode, which is regarded as the most promising high-energy substituent of graphite, is vulnerable to the crack during calendering process due to its intrinsic brittleness. Herein, a distinct strategy to prevent the crack and pulverization of Si nanolayer-embedded Graphite (Si/G) composite with graphene nanoplatelets (GNP) is proposed.

View Article and Find Full Text PDF