Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The demand for all-solid-state batteries (ASSBs) featuring credible LiPSCl argyrodite (LPSCl) electrolytes is increasing, driving interest in exploring suitable current collectors for ASSBs. Copper (Cu), used as a current collector in traditional lithium-ion batteries, exhibits significant instability in LPSCl-ASSBs. In this study, the effectiveness of iron (Fe) is systematically investigated as an alternative current collector in LPSCl-ASSBs and compare its performance to that of Cu. Electrochemical analyses reveal that Cu undergoes unfavorable side reactions with LPSCl, forming copper sulfides and leading to pitting corrosion. In contrast, Fe, with its thick native oxide layer, effectively mitigates sulfide sub-reactions, enhancing the stability of the current collector-LPSCl electrolyte interface. Density function theory calculations and thermal tools using XRD and linear thermammetry confirm the higher stability of Fe with LPSCl compared to Cu. Replacing the Cu current collector with Fe significantly improves the long-term stability of graphite-based negative electrodes in ASSBs, achieving exceptional long cycleability exceeding 1000 cycles. These findings identify Fe as a promising current collector for ASSBs and provide valuable insights into the metal-electrolyte interactions that govern the performance of these advanced battery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409523DOI Listing

Publication Analysis

Top Keywords

current collector
20
current
7
collector
5
iron sulfidation-resistant
4
sulfidation-resistant current
4
collector negative
4
negative electrode
4
electrode sulfide-based
4
sulfide-based all-solid-batteries
4
all-solid-batteries demand
4

Similar Publications

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

Understanding the electrochemical extraction and deposition of lithium (Li) from cathode is crucial for advancing anode-free solid-state batteries (AFSSBs). Herein, cryo-transmission electron microscopy (cryo-TEM) and electrochemical studies are employed to investigate how current collector surface properties, current densities, and cathode loadings influence the morphology of fresh electrochemically deposited Li and the electrochemical performance in sulfide-based AFSSBs. Cryo-TEM reveals that Cu current collectors induce irregular, dendritic Li deposits due to their lithiophobic nature and reactivity with LiPSCl (LPSC), while Ni and Au facilitate more uniform, planar-like Li growth.

View Article and Find Full Text PDF

Scalable One-Step Synthesis of Graphene/Polyaniline Films via Dual-Functional HSO for Supercapacitor Electrodes.

Langmuir

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Supercapacitors serve as an important complement to batteries in sustainable energy storage and utilization systems, necessitating the efficient preparation of high-performance electrodes for practical applications. Here, we present a scalable one-step strategy for fabricating integrated graphene/polyaniline electrodes directly on current collectors, enabled by the dual functionality of HSO in a rapid 20 min process. Initially, dilute HSO acts as a protonation medium to facilitate the oxidative polymerization of aniline by ammonium persulfate.

View Article and Find Full Text PDF