A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of fin-LEDs for next-generation inorganic displays using face-selective dielectrophoretic assembly. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Micro-light-emitting diodes offer vibrant colors and energy-efficient performance, holding promise for next-generation inorganic displays. However, their widespread adoption requires the development of cost-effective chips and low-defect pixelation processes. Addressing these challenges, nanorod-light-emitting diodes utilize inkjet and dielectrophoretic assembly techniques. Nevertheless, the small volume and edge-directed emission of nanorod-light-emitting diodes necessitate brightness and light extraction improvements. As an alternative, we propose dielectrophoretic-friendly fin-light-emitting diodes, designed to enhance brightness and light extraction efficiency through face-selective dielectrophoretic assembly technology. Our results confirm the potential for next-generation inorganic displays, with a wafer utilization ratio exceeding 90%, a vertical assembly ratio of 91.3%, and a pixel production yield of 99.93%. Moreover, blue fin-light-emitting diodes achieve an external quantum efficiency of 9.1% and a brightness of 8640 cd m at 5.0 V, which, even at this early stage, are comparable to existing technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535221PMC
http://dx.doi.org/10.1038/s41467-024-53965-0DOI Listing

Publication Analysis

Top Keywords

next-generation inorganic
12
inorganic displays
12
dielectrophoretic assembly
12
face-selective dielectrophoretic
8
nanorod-light-emitting diodes
8
brightness light
8
light extraction
8
fin-light-emitting diodes
8
diodes
5
development fin-leds
4

Similar Publications