A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Contrastive Speaker Representation Learning with Hard Negative Sampling for Speaker Recognition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Speaker recognition is a technology that identifies the speaker in an input utterance by extracting speaker-distinguishable features from the speech signal. Speaker recognition is used for system security and authentication; therefore, it is crucial to extract unique features of the speaker to achieve high recognition rates. Representative methods for extracting these features include a classification approach, or utilizing contrastive learning to learn the speaker relationship between representations and then using embeddings extracted from a specific layer of the model. This paper introduces a framework for developing robust speaker recognition models through contrastive learning. This approach aims to minimize the similarity to hard negative samples-those that are genuine negatives, but have extremely similar features to the positives, leading to potential mistaken. Specifically, our proposed method trains the model by estimating hard negative samples within a mini-batch during contrastive learning, and then utilizes a cross-attention mechanism to determine speaker agreement for pairs of utterances. To demonstrate the effectiveness of our proposed method, we compared the performance of a deep learning model trained with a conventional loss function utilized in speaker recognition with that of a deep learning model trained using our proposed method, as measured by the equal error rate (EER), an objective performance metric. Our results indicate that when trained with the voxceleb2 dataset, the proposed method achieved an EER of 0.98% on the voxceleb1-E dataset and 1.84% on the voxceleb1-H dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478696PMC
http://dx.doi.org/10.3390/s24196213DOI Listing

Publication Analysis

Top Keywords

speaker recognition
20
proposed method
16
hard negative
12
contrastive learning
12
speaker
9
deep learning
8
learning model
8
model trained
8
learning
6
recognition
6

Similar Publications