7,758 results match your criteria: "Institute of Applied Physics[Affiliation]"
Adv Mater
September 2025
Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China.
The high sensitivity and wide linearity are crucial for flexible tactile sensors in adapting to diverse application scenarios with high accuracy and reliability. However, conventional optimization strategies of constructing microstructures suffer from the mutual restriction between the high sensitivity and wide linearity. Herein, a novel design of localized gradient conductivity (LGC) with partly covered low-conductivity (low-σ) carbon/Polydimethylsiloxane layer on high-conductivity (high-σ) silver nanowires film upon the micro-dome structure is proposed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFChaos
September 2025
A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Ulyanova Street 46, Nizhny Novgorod 603950, Russia.
The Kuramoto model, a paradigmatic framework for studying synchronization, exhibits a transition to collective oscillations only above a critical coupling strength in the thermodynamic limit. However, real-world systems are finite, and their dynamics can deviate significantly from mean-field predictions. Here, we investigate finite-size effects in the Kuramoto model below the critical coupling, where the theory in the thermodynamic limit predicts complete asynchrony.
View Article and Find Full Text PDFAdv Mater
September 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Semiconductor Electronics (IHT), RWTH Aachen University, 52074 Aachen, Germany.
Hard entropy limits of impurity doping prevent further miniaturization of low nanoscale silicon-based very large scale integration (VLSI) devices, thereby obstructing the path toward more energy-efficient VLSI designs with higher yield in compute power. As demonstrated here by synchrotron UV photoelectron spectroscopy (UPS) and X-ray absorption spectroscopy in total fluorescence yield mode (XAS-TFY), intrinsic Si at the bottom of the nanoscale (i-nano-Si) turns into strong p- or n-Si by embedding in silicon nitride (SiN) or silicon dioxide (SiO), respectively. The associated Nanoscale Electronic Structure Shift Induced by Anions at Surfaces (NESSIAS) creates a p/n junction in i-nano-Si by the quantum-chemical impact of SiN- vs SiO-coating, providing energy landscapes to accumulate electrons (holes) when SiO- (SiN-) coated, with free charge carriers provided by metallic interconnects.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engin
Precise engineering of hydrophobic microenvironments in synthetic peptide-catecholamine co-assemblies remains challenging for tunable fluorescence. Hierarchical nanostructures were constructed through sequence-specific peptide encoding (GYK tripeptide and Ac-IIIGYK-NH₂ hexapeptide) and co-assembly with catecholamines of graded hydrophobicity. Structural dynamics were analyzed via molecular simulations, HPLC, AFM, and spectroscopy.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13A, 1090, Vienna, Austria.
The human monoamine transporters (MATs) for serotonin (SERT), dopamine (DAT), and norepinephrine (NET) play a key role in neurotransmission by transporting neurotransmitters from the synaptic cleft back into the neuron. MATs are embedded in the cell membrane's lipid bilayer, encompassing cholesterol, phospholipids, and sphingolipids as main components. Membrane cholesterol association has been shown for all MATs impacting transporter conformation, substrate affinity, transport velocity, and turnover rates.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.
We report the development of a variable-temperature Kelvin probe force microscopy (KPFM) system based on a Gifford-McMahon cryocooler, which enables stable and highly sensitive operation across a broad temperature range. The system integrates a custom-designed phase-locked loop, automatic gain control, and compact passive vibration isolation stages, effectively suppressing mechanical vibrations intrinsic to cryostats. We demonstrate the system's performance using a monolayer graphene (MLG) device encapsulated in hexagonal boron nitride, serving as a benchmark platform to validate spatial resolution and CPD sensitivity.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 117575, Singapore.
Organic semiconductors are widely used in flexible electronics, optoelectronic devices, and thermoelectric systems. Among them, copper hexadecafluorophthalocyanine (FCuPc), an n-type organic semiconductor, exhibits excellent chemical and thermal stability, making it suitable for a range of device applications. As device architectures scale down to the nanoscale, understanding the intrinsic thermal transport properties of such materials becomes critical for effective thermal management.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Catalytic methane (CH) upgrading to C products has attracted widespread interest. However, non-oxidative coupling and oxidative coupling of CH are limited by coking and over-oxidation, respectively. In this work, we propose an efficient and stable CH conversion system in a solid oxide steam electrolyzer, enabling the simultaneous production of C hydrocarbons and H.
View Article and Find Full Text PDFSci Rep
September 2025
Faculty of Physics, University of Tabriz, Tabriz, 51665-163, Iran.
Recent advances in nanostructured photodetectors have enabled precise control over light absorption while minimizing photon losses. In this work, we demonstrate a plasmonic metamaterial absorber based on two-dimensional MXene (Ti₃C₂Tₓ) featuring geometrically tunable tetragram-shaped arrays. Through finite-difference time-domain (FDTD) simulations and structural optimization, we achieved over 90% photon absorption across the broadband spectral range of 1000-2500 nm, representing a significant enhancement in operational bandwidth.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education (MAHE), Manipal, 576104), Karnataka, India.
Sci Rep
August 2025
Institute of Applied Physics "Nello Carrara", National Research Council of Italy (CNR), Sesto Fiorentino, 50019, Italy.
Monitoring of CO is crucial because of its profound impact on both environmental and human health. A novel highly sensitive refractive index (RI) sensor, utilizing a double-slot microring resonating structure, has been designed and numerically assessed for the sensitive detection of gas media. The structure consisted of a circular microring resonator nested in a racetrack resonating configuration mimicking the structure of an eye-shaped microring resonator (ESMRR).
View Article and Find Full Text PDFJACS Au
August 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Accurate prediction of reaction energetics remains a fundamental challenge in computational chemistry, as conventional density functional theory (DFT) often fails to reconcile high accuracy with computational efficiency. Here, we introduce Deep post-Hartree-Fock (DeePHF), a machine learning framework that integrates neural networks with quantum mechanical descriptors to achieve CCSD-(T)-level precision while retaining the efficiency of DFT to solve the reaction problems. By establishing a direct mapping between the eigenvalues of local density matrices and high-level correlation energies, DeePHF circumvents the traditional accuracy-scalability tradeoff.
View Article and Find Full Text PDFAdv Mater
August 2025
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Intercalation-type cathodes continue to dominate aqueous multivalent ion storage, despite higher theoretical capacities being available from conversion reactions involving multiple electron transfer. Pushing intercalation-type cathodes into conversion is certainly desirable, conventionally with great sacrificing cycling-stability, kinetics, and discharge potential. To date, limited progress has been achieved in overcoming this longstanding and formidable performance trade-off.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Institute of Applied Physics, Military University of Technology, 2 gen. Sylwestra Kaliskiego St., 00-908 Warsaw, Poland.
This article describes an external refractive index (RI) sensor based on a spectral analysis of the light transmission through a long tapered side-hole optical fiber (S-H OF). A section of the S-H OF was fusion-spliced with SMFs at both ends and connected to a supercontinuum source at the input and an optical spectrum analyzer (OSA) at the output. To investigate the effect of the external RI on the spectral characteristics, immersion liquids with refractive indices in the ranges of 1.
View Article and Find Full Text PDFEntropy (Basel)
July 2025
Department of Physics, Institute of Applied Physics, CONICET, National University of San Luis, Ejército de Los Andes 950, San Luis 5700, Argentina.
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials.
View Article and Find Full Text PDFDalton Trans
August 2025
Institute of Applied Physics and Materials Engineering, University of Macau, China.
Alkaline water electrolysis (AWE) is a promising green hydrogen production technology, yet it is hindered by high-cost noble metal catalysts and poor low-cost alternatives. This study shows that 3D-printed martensitic steel, particularly a Ni11.0-Co13.
View Article and Find Full Text PDFSmall Methods
August 2025
Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
2D transition metal dichalcogenide (TMDs) of monolayer molybdenum diselenide (MoSe) is an emerging semiconductor for next-generation electronics, owing to its remarkable physical and electronic properties. The realization of diverse device applications depends critically on the scalable synthesis of high-quality monolayer MoSe crystals, which remains challenging. In this study, the successful epitaxy of monolayer MoSe films is demonstrated on sapphire substrates at a maximum wafer size of 2 inches via a salt-assisted chemical vapor deposition (SA-CVD) technique.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2025
Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China.
High-quality hole injection layers (HILs) are essential for efficient and stable quantum dot light-emitting diodes (QLEDs). While NiO is a stable alternative to the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HIL, its low hole injection limits its practical application. This work enhances NiO hole injection efficiency by combining Mg alloying to deepen work function (5.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany.
We present a comprehensive study on the femtosecond laser direct welding of glass and metal, focusing on optimizing processing parameters and understanding the influence of material properties and beam shaping on welding quality. Using microscopy, we identified optimal pulse energy, focal position, and line-spacing for achieving high-quality welds. We further investigated the effects of laser beam shaping and material property differences in various glass-to-metal pairs, including borosilicate, fused silica, and Zerodur glasses welded with mirror-polished metals such as Cu, Mo, Al, Ti, and AISI316 steel.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science an
Achieving selective electrochemical CO reduction reaction (CORR) in strong acid holds potential to resolve the "carbonate formation" problem yet is hindered by the competing hydrogen evolution reaction (HER). The interplay between different hydrogen sources (i.e.
View Article and Find Full Text PDFResearch (Wash D C)
August 2025
National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
The advent of machine learning (ML) in computational chemistry heralds a transformative approach to one of the quintessential challenges in computer-aided drug design (CADD): the accurate and cost-effective calculation of atomic interactions. By leveraging a neural network (NN) potential, we address this balance and push the boundaries of the NN potential's representational capacity. Our work details the development of a robust general-purpose NN potential, architected on the framework of DPA-2, a deep learning potential with attention, which demonstrates remarkable fidelity in replicating the interatomic potential energy surface for drug-like molecules comprising 8 critical chemical elements: H, C, N, O, F, S, Cl, and P.
View Article and Find Full Text PDFACS Meas Sci Au
August 2025
Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria.
Extracellular vesicles (EVs) are nanosized particles that are associated with various physiological and pathological functions. They play a key role in intercell communication and are used as transport vehicles for various cell components. In human milk, EVs are believed to be important for the development of acquired immunity.
View Article and Find Full Text PDFACS Photonics
August 2025
Department of Physics, University of Washington, Seattle, Washington 98195, United States.
Triggered by advances in atomic-layer exfoliation and growth techniques, along with the identification of a wide range of extraordinary physical properties in self-standing films consisting of one or a few atomic layers, two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and other van der Waals (vdW) crystals now constitute a broad research field expanding in multiple directions through the combination of layer stacking and twisting, nanofabrication, surface-science methods, and integration into nanostructured environments. Photonics encompasses a multidisciplinary subset of those directions, where 2D materials contribute remarkable nonlinearities, long-lived and ultraconfined polaritons, strong excitons, topological and chiral effects, susceptibility to external stimuli, accessibility, robustness, and a completely new range of photonic materials based on layer stacking, gating, and the formation of moiré patterns. These properties are being leveraged to develop applications in electro-optical modulation, light emission and detection, imaging and metasurfaces, integrated optics, sensing, and quantum physics across a broad spectral range extending from the far-infrared to the ultraviolet, as well as enabling hybridization with spin and momentum textures of electronic band structures and magnetic degrees of freedom.
View Article and Find Full Text PDF