98%
921
2 minutes
20
In this study, we introduce a novel interdisciplinary framework that applies concepts from statistical physics, specifically lattice-gas models, to the classical order lot-sizing problem in supply chain management. Traditional methods often rely on heuristic or deterministic approaches, which may fail to capture the inherently probabilistic and dynamic nature of decision-making across multiple periods. Drawing on structural parallels between inventory decisions and adsorption phenomena in physical systems, we constructed a mapping that represented order placements as particles on a lattice, governed by an energy function analogous to thermodynamic potentials. This formulation allowed us to employ analytical tools from statistical mechanics to identify optimal ordering strategies via the minimization of a free energy functional. Our approach not only sheds new light on the structural characteristics of optimal planning but also introduces the concept of configurational entropy as a measure of decision variability and robustness. Numerical simulations and analytical approximations demonstrate the efficacy of the lattice gas model in capturing key features of the problem and suggest promising avenues for extending the framework to more complex settings, including multi-item systems and time-varying demand. This work represents a significant step toward bridging physical sciences with supply chain optimization, offering a robust theoretical foundation for both future research and practical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385361 | PMC |
http://dx.doi.org/10.3390/e27080774 | DOI Listing |
J Med Internet Res
September 2025
School of Advertising, Marketing and Public Relations, Faculty of Business and Law, Queensland University of Technology, Brisbane, Australia.
Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.
View Article and Find Full Text PDFPLoS One
September 2025
Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.
Non-replacement dairy calves (i.e., males and females not needed for milking herd replacement) can face multiple welfare challenges due to their low economic value in the dairy and beef industries.
View Article and Find Full Text PDFHealth Care Anal
September 2025
Harbin Institute of Technology, Harbin, China.
The US healthcare system is characterized by a persistent deadlock, where high costs, low efficiency, and inequity resist fundamental reform. This stalemate is rooted in deep ideological divides, political polarization, a fragmented fiscal structure, and the power of entrenched interest groups. This article analyzes how recent trade protectionist policies, specifically tariffs on pharmaceuticals and their inputs, intersect with this domestic gridlock.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Faculdade de Engenharia da Universidade do Porto, INESC TEC, Porto, Portugal.
Food waste generated throughout the food supply chain raises several environmental, social, and economic issues. Quantitative methods can aid in managing food waste by describing current contexts, predicting future scenarios, and improving related operations. However, a literature review on the use of quantitative methods, specifically the descriptive, predictive, and prescriptive dimensions, to assess and prevent food waste is lacking.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2025
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,
Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.
View Article and Find Full Text PDF