98%
921
2 minutes
20
The insufficient cellular infiltration and cell activity are the main challenges for bone regeneration in the central region. Here, actively infiltrative micro/nanochannels were engineered within the filaments of 3D printed scaffolds using supercritical CO foaming and particles leaching. This structure facilitated cell and protein migration, enabling deep infiltration within the filaments. These hierarchical micro/nanochannels induced cellular deformation, thereby enhancing mitochondrial activity. Transcriptomic analysis revealed that cytoskeletal stretching, triggered by actively infiltrative micro/nanochannels, activated the Wnt/β-catenin pathway via YAP-mediated mechanotransduction, significantly enhancing the tricarboxylic acid cycle to boost mitochondrial ATP production. By leveraging capillary forces for long-distance cell migration and activating a high-energy cellular state through mechanotransduction, this strategy enables rapid bone regeneration in the central region of large-scale rabbit cranial defects. Our findings overcome diffusion-limited osteogenesis and promote endogenous bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c09462 | DOI Listing |
Ann Hematol
September 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.
Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.
The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).
View Article and Find Full Text PDFHepatology
September 2025
Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.
Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.
View Article and Find Full Text PDFInt J Mol Med
November 2025
Department of Neurosciences 'Rita Levi Montalcini', University of Turin, I‑10125 Turin, Italy.
Kinases are activators of well‑known inflammatory cascades implicated in metabolic disorders, and abnormal activation of casein kinase II (CK2) is associated with several inflammatory disorders. However, thus far, its role in the low‑grade chronic inflammatory response known as 'metaflammation', which is a hallmark of obesity and type 2 diabetes, has not yet been elucidated. The present study aimed to evaluate the role of CK2 in diet‑induced metaflammation and the effects of the CK2 inhibitor 4,5,6,7‑tetrabromobenzotriazole (TBB) on a murine model fed a high‑fat‑high‑sugar (HFHS) diet.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.