Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lipase is a type of hydrolase that catalyzes reactions at the water-in-oil (O/W) interface and possesses significant applied value across various fields. This study introduces integrated reaction-separation system employing microfluidic slug in a water-in-oil (W/O) droplet flow, specifically designed to enhance lipase-catalyzed interfacial lipid hydrolysis. By incorporating spiral microchannels, the system significantly improves interfacial mass transfer through slug flow-induced mixing and turbulence. Tributyrin hydrolysis within a liquid paraffin/phosphate buffer biphasic system serves as the model reaction to investigate the mechanisms underlying the intensification of interfacial enzymatic catalysis. Under comparable conditions, the microfluidic slug droplet system achieves an enzymatic reaction rate approximately 20 times greater than that observed in conventional beaker-based systems and 1.36 times greater than that in straight microchannels. The effects of droplet size, total flow rate, and channel curvature on conversion efficiency and reaction kinetics are examined, demonstrating that these parameters significantly impact mass transfer behavior. The dynamic interfaces generated within the slug flow architecture increase the specific surface area and facilitate accelerated mass transport, thereby enabling more efficient oil-water biphasic catalysis. This platform offers considerable potential for advancing interfacial biocatalysis and optimizing enzymatic transformations across a broad range of industrial and biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-025-03631-2DOI Listing

Publication Analysis

Top Keywords

intensification interfacial
8
interfacial enzymatic
8
slug flow
8
microfluidic slug
8
mass transfer
8
times greater
8
slug
5
enzymatic
4
enzymatic reactions
4
reactions oil-water
4

Similar Publications

Synergistic enhancement of chitosan-diatomite composite in microalgae flocculation: Mechanistic insights into extracellular polymeric substances-mediated harvesting.

Int J Biol Macromol

September 2025

School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, China.

Chitosan is a promising bioflocculant for harvesting microalgae, its practical implementation is constrained by high dosage demands (typically >1 g/L) and suboptimal settling kinetics. And the microalgae harvesting process is susceptible to the significant influence of extracellular polymeric substances (EPS), the mechanism of which is still unclear. This study synthesized amino-functionalized chitosan-diatomite composites (APTES-CTS/DTE) and revealed the action mechanism of EPS in the flocculation of microalgae.

View Article and Find Full Text PDF

Integrating semiconductor nanowires with a nanoplasmonic metal surface substrate enables a real-time photocurrent response, offering a promising immunosensing platform. However, achieving one-step biorecognition detection of cardiac troponin I (cTnI) biomarker remains a challenge. Herein, we present the development of an antenna-engaged nanowire-inspired porous heterostructure comprising polydopamine-functionalized titanium dioxide nanowires integrated with an Au plasmonic layer (PDA/TNW/Au-PL) for ultrasensitive immunosensors under homemade white light-emitting diodes (LEDs).

View Article and Find Full Text PDF

Lipase is a type of hydrolase that catalyzes reactions at the water-in-oil (O/W) interface and possesses significant applied value across various fields. This study introduces integrated reaction-separation system employing microfluidic slug in a water-in-oil (W/O) droplet flow, specifically designed to enhance lipase-catalyzed interfacial lipid hydrolysis. By incorporating spiral microchannels, the system significantly improves interfacial mass transfer through slug flow-induced mixing and turbulence.

View Article and Find Full Text PDF

Dynamics of droplet breakup symmetrically placed between two collapsing cavities via numerical simulations.

Ultrason Sonochem

September 2025

Multiphase Reactors and Intensification Group, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland. Electronic address:

Hydrodynamic cavitation is increasingly used for the production of liquid-liquid emulsions, yet the detailed mechanisms of droplet breakup induced by cavity collapse remain poorly understood. This study presents direct numerical simulations (DNS) of oil droplet fragmentation under the influence of two symmetrically collapsing cavities in water, mimicking conditions in cavitation-based emulsification devices. A volume-of-fluid (VOF) multiphase model is employed to examine the effects of interfacial tension (σ), viscosity ratio (λ), droplet-to-cavity size ratio (β), and driving pressure (ΔP) on droplet deformation and energy dissipation rate (ε).

View Article and Find Full Text PDF

pH-dependent release of goethite-bound phosphate by biochar-derived DOM: Non-negligible role of aromatic nitrogen and highly unsaturated sulfur compounds.

Water Res

October 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China.

Iron oxide-mediated phosphate immobilization (e.g., goethite) in acidic soils severely constrains phosphorus bioavailability through mineral-water interfacial reactions, resulting in a significant agricultural bottleneck.

View Article and Find Full Text PDF