Combined effects of high-fat diet feeding and Streptococcus agalactiae infection on lipid metabolism, antioxidant status, and immune response in tilapia (Oreochromis niloticus).

Comp Biochem Physiol C Toxicol Pharmacol

Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China. Electronic address: zhuj@ffrc

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-fat diet (HFD) and Streptococcus agalactiae are common pathogenic factors affecting tilapia health, yet their combined effects and underlying mechanisms are not well understood. To address this, we conducted a comprehensive evaluation of the potential response mechanisms in tilapia subjected to both factors. Tilapia were fed normal (NC) or high-fat diet (HFD) for 90 days, then challenged with S. agalactiae. At 48 h post-infection, blood, liver, and spleen samples were collected for biochemical parameter analysis and gene expression profiling. The results indicated that the combined treatment upregulated the expression of peroxisome proliferator-activated receptor α (pparα) and fatty acid transport protein 1 (fatp1). Concurrently, it increased 3-hydroxy-3-methylglutaryl-CoA reductase (hmgcr) expression, while decreasing cholesterol 7α-hydroxylase (cyp7a1) expression compared to HFD alone. Antioxidant status analysis revealed that the combined treatment decreased glutathione (GSH) content, total antioxidant capacity (T-AOC), and mRNA levels of nuclear factor erythroid 2-related factor 2 (nrf2), NAD(P)H quinone dehydrogenase 1 (nqo1), and glutathione peroxidase 3 (gpx3). Intriguingly, while both individual stressors upregulated inflammatory and immune-related genes, their combination suppressed interleukin-1β (il-1β), il-8, and immunoglobulin M (igm) expression compared to infection alone. The apoptotic response triggered by S. agalactiae infection, characterized by elevated caspase-3 (cas3), cas9, and cytochrome c (cytc), was inhibited in the liver of combined treatment group. Moreover, all experimental groups showed elevated expression of endoplasmic reticulum stress-related genes: inositol-requiring enzyme 1 (ire1), eukaryotic translation initiation factor 2 alpha kinase 3 (eif2ak3), activating transcription factor 6 (atf6), and binding immunoglobulin protein (bip). These findings collectively demonstrated that HFD exacerbated the pathogenic effects of S. agalactiae through multiple mechanisms, including metabolic dysregulation, oxidative stress potentiation, and complex immunomodulation. Furthermore, the Nrf2 and NF-kB signaling pathways may be implicated in mediating these adverse effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2025.110321DOI Listing

Publication Analysis

Top Keywords

high-fat diet
12
combined treatment
12
combined effects
8
streptococcus agalactiae
8
agalactiae infection
8
antioxidant status
8
diet hfd
8
factors tilapia
8
expression compared
8
expression
6

Similar Publications

Subcutaneous administration of the sphingosine kinase 2 inhibitor ABC294640 has no metabolic benefits in high fat diet-induced obesity in male mice.

Life Sci

September 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:

Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.

View Article and Find Full Text PDF

Exendin-4 Prevents oxLDL-Induced upregulation of TREM2 and attenuates foam cell formation and inflammation in Macrophages.

Biochem Pharmacol

September 2025

Guizhou Medical University, Guiyang 550004 Guizhou, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, PR China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, G

Atherosclerosis (AS), a chronic inflammatory disease and a leading cause of cardiovascular morbidity and mortality. Macrophage-mediated lipid uptake and inflammation are central to plaque formation. TREM2, an immunoreceptor expressed in macrophages, has been reported to regulate lipid metabolism and inflammation, yet its role in atherosclerosis remains controversial.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) affects a large proportion of the global population and is widely regarded as the fastest growing cause of hepatocellular carcinoma. Currently, approved therapeutic strategies for MASH are limited. Therefore, this study used the Connectivity Map (CMap) database to identify a candidate compound for MASH, evaluate its efficacy in experimental models, and explore its mechanism of action.

View Article and Find Full Text PDF

Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.

View Article and Find Full Text PDF