Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.
View Article and Find Full Text PDFGrowing evidence indicates an important link between gut microbiota, obesity, and metabolic syndrome. Alterations in exocrine pancreatic function are also widely present in patients with diabetes and obesity. To examine this interaction, C57BL/6J mice were fed a chow diet, a high-fat diet (HFD), or an HFD plus oral vancomycin or metronidazole to modify the gut microbiome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Previous studies have shown that insulin and IGF-1 signaling in the brain, especially the hypothalamus, is important for regulation of systemic metabolism. Here, we develop mice in which we have specifically inactivated both insulin receptors (IRs) and IGF-1 receptors (IGF1Rs) in the hippocampus (Hippo-DKO) or central amygdala (CeA-DKO) by stereotaxic delivery of AAV-Cre into IR/IGF1R mice. Consequently, both Hippo-DKO and CeA-DKO mice have decreased levels of the GluA1 subunit of glutamate AMPA receptor and display increased anxiety-like behavior, impaired cognition, and metabolic abnormalities, including glucose intolerance.
View Article and Find Full Text PDFMol Psychiatry
December 2018
Obesity and diabetes in humans are associated with increased rates of anxiety and depression. To understand the role of the gut microbiome and brain insulin resistance in these disorders, we evaluated behaviors and insulin action in brain of mice with diet-induced obesity (DIO) with and without antibiotic treatment. We find that DIO mice have behaviors reflective of increased anxiety and depression.
View Article and Find Full Text PDFNeuropsychopharmacology
August 2018
Elucidating mechanisms by which physical exercise promotes resilience, the brain's ability to cope with prolonged stress exposure while maintaining normal psychological functioning, is a major research challenge given the high prevalence of stress-related mental disorders, including major depressive disorder. Chronic voluntary wheel running (VWR), a rodent model that mimics aspects of human physical exercise, induces the transcription factor ΔFosB in the nucleus accumbens (NAc), a key reward-related brain area. ΔFosB expression in NAc modulates stress susceptibility.
View Article and Find Full Text PDFObjective: Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS).
View Article and Find Full Text PDFDiet, genetics, and the gut microbiome are determinants of metabolic status, in part through production of metabolites by the gut microbiota. To understand the mechanisms linking these factors, we performed LC-MS-based metabolomic analysis of cecal contents and plasma from C57BL/6J, 129S1/SvImJ, and 129S6/SvEvTac mice on chow or a high-fat diet (HFD) and HFD-treated with vancomycin or metronidazole. Prediction of the functional metagenome of gut bacteria by PICRUSt analysis of 16S sequences revealed dramatic differences in microbial metabolism.
View Article and Find Full Text PDFMice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate.
View Article and Find Full Text PDFHuman consumption of obesogenic diets and soft drinks, sweetened with different molecules, is increasing worldwide, and increases the risk of metabolic diseases. We hypothesized that the chronic consumption of caloric (sucrose, high-fructose corn syrup (HFCS), maltodextrin) and non-caloric (sucralose) solutions under 2-hour intermittent access, alongside the consumption of a high-fat high-sucrose diet, would result in differential obesity-associated metabolic abnormalities in mice. Male C57BL/6 mice had ad libitum access to an HFHS diet and to water (water control group).
View Article and Find Full Text PDFJ Clin Invest
December 2016
Interactions of diet, gut microbiota, and host genetics play important roles in the development of obesity and insulin resistance. Here, we have investigated the molecular links between gut microbiota, insulin resistance, and glucose metabolism in 3 inbred mouse strains with differing susceptibilities to metabolic syndrome using diet and antibiotic treatment. Antibiotic treatment altered intestinal microbiota, decreased tissue inflammation, improved insulin signaling in basal and stimulated states, and improved glucose metabolism in obesity- and diabetes-prone C57BL/6J mice on a high-fat diet (HFD).
View Article and Find Full Text PDFConsumption of sugar-sweetened beverages is associated with overweight and obesity. In this study, we hypothesized that obesity-prone (OP) mice fed a high-fat high-sucrose diet (HFHS) are more sensitive to consumption of sucrose-sweetened water (SSW) than obesity-resistant (OR) mice. After 3weeks of ad libitum access to the HFHS diet (7.
View Article and Find Full Text PDFIntake of sodas has been shown to increase energy intake and to contribute to obesity in humans and in animal models, although the magnitude and importance of these effects are still debated. Moreover, intake of sugar sweetened beverages is often associated with high-fat food consumption in humans. We studied two different accesses to a sucrose-sweetened water (SSW, 12.
View Article and Find Full Text PDF