Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interactions of diet, gut microbiota, and host genetics play important roles in the development of obesity and insulin resistance. Here, we have investigated the molecular links between gut microbiota, insulin resistance, and glucose metabolism in 3 inbred mouse strains with differing susceptibilities to metabolic syndrome using diet and antibiotic treatment. Antibiotic treatment altered intestinal microbiota, decreased tissue inflammation, improved insulin signaling in basal and stimulated states, and improved glucose metabolism in obesity- and diabetes-prone C57BL/6J mice on a high-fat diet (HFD). Many of these changes were reproduced by the transfer of gut microbiota from antibiotic-treated donors to germ-free or germ-depleted mice. These physiological changes closely correlated with changes in serum bile acids and levels of the antiinflammatory bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) and were partially recapitulated by treatment with a TGR5 agonist. In contrast, antibiotic treatment of HFD-fed, obesity-resistant 129S1 and obesity-prone 129S6 mice did not improve metabolism, despite changes in microbiota and bile acids. These mice also failed to show a reduction in inflammatory gene expression in response to the TGR5 agonist. Thus, changes in bile acid and inflammatory signaling, insulin resistance, and glucose metabolism driven by an HFD can be modified by antibiotic-induced changes in gut microbiota; however, these effects depend on important interactions with the host's genetic background and inflammatory potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127688PMC
http://dx.doi.org/10.1172/JCI86674DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
insulin resistance
12
glucose metabolism
12
antibiotic treatment
12
resistance glucose
8
bile acids
8
bile acid
8
tgr5 agonist
8
microbiota
7
changes
6

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.

View Article and Find Full Text PDF

Purpose Of The Review: This review aimed to summarize current evidence on the effectiveness of medical nutrition therapy (MNT) in the management of obesity and endometriosis, with a focus on dietary patterns such as the Mediterranean and Ketogenic diets, as well as nutritional supplementation. Additionally, it highlights the central role of the clinical nutritionist in implementing individualized, evidence-based interventions within multidisciplinary care.

Recent Findings: Although the literature reports the existence of an inverse relationship between risk of endometriosis and body mass index, clinical evidence jointly reports that a condition of obesity is associated with greater disease severity.

View Article and Find Full Text PDF

The ameliorative effect of Lactiplantibacillus plantarum SCS2 on DSS-induced murine colitis.

Arch Microbiol

September 2025

School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.

The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.

View Article and Find Full Text PDF

16S rRNA metagenome analysis of gut bacteriome of Rohu () from Halda River and Kaptai Lake, Bangladesh.

Microbiol Resour Announc

September 2025

Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh.

This research evaluated the gut microbiota of Rohu fish from the Halda River and Kaptai Lake in Bangladesh by 16S rRNA sequencing. Distinct microbial profiles were identified, with Halda samples concentrated in pathogens and Kaptai samples abundant in probiotics.

View Article and Find Full Text PDF