Circularly polarized thermal emission driven by chiral flatbands in monoclinic metasurfaces.

Sci Adv

Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Achieving circularly polarized thermal emissions with high spatiotemporal coherence using planar structures has long been considered to be elusive. Here, we use nonlocal metasurfaces with monoclinic lattices that break mirror symmetry to efficiently achieve circularly polarized thermal emissions with both high temporal and spatial coherence. We design a chiral metasurface based on waveguide arrays with periodically shifted segments that have a saddle-shaped chiral and high- dispersion band. The parabolic shape along one direction ensures minimum involvement of spatial/Fourier components at each frequency, thereby achieving circularly polarized thermal emission with high spatial coherence. Meanwhile, the flatband behavior along the other direction allows the use of a slot-shaped spatial filter and a mid-infrared lens to collect emissions from large-area metasurfaces, thus improving power collection efficiency without affecting temporal coherence. Our experiments demonstrate circularly polarized thermal emissions with high temporal coherence ( > 200) and very large circular dichroism (~0.8).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309691PMC
http://dx.doi.org/10.1126/sciadv.adw0986DOI Listing

Publication Analysis

Top Keywords

circularly polarized
20
polarized thermal
20
thermal emissions
12
emissions high
12
thermal emission
8
achieving circularly
8
high temporal
8
spatial coherence
8
temporal coherence
8
circularly
5

Similar Publications

Helicenes are circularly polarized luminescence (CPL)-active but suffer from a fundamental tradeoff between fluorescence quantum yield (Φ) and luminescence dissymmetry factor (||). Herein, we present a strategy combining lateral π-extension and helical elongation in carbazole-embedded helicenes to address this challenge. Specifically, π-extended diaza[7]helicene () and diaza[9]helicene () were synthesized and characterized, revealing nearly a 2-fold increase in Φ and a 6-fold enhancement in || from to .

View Article and Find Full Text PDF

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Chiral spin constrained assemblies for polarized optical mapping.

Sci Adv

September 2025

Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.

Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.

View Article and Find Full Text PDF

Circularly polarized organic light-emitting diodes (CP-OLEDs) exhibiting circularly polarized electroluminescence (CP-EL) properties hold significant promise for future display technologies. However, enhancing the electroluminescence dissymmetry factor ( ) remains a substantial challenge. Herein, ultrastrong CP-EL emissions are achieved using a liquid crystal (LC)-functionalization strategy under the regulation of chiral co-assembly.

View Article and Find Full Text PDF