98%
921
2 minutes
20
Bacterial infections and the disturbance of immune microenvironment contribute to chronic non-healing wounds. Macrophage polarization and phenotypic transition play a critical role in modulating the immune microenvironment of wounds. To address these intertwined challenges of bacterial burden and immune dysregulation, an innovative multifunctional therapeutic nanoplatform is developed that integrates black phosphorus quantum dots (BPQDs) into exosomes derived from adipose stem cells (BPQDs@EXOs). In vitro experiments show that the platform exhibited broad-spectrum photothermal antibacterial properties, efficient ROS scavenging ability, and the effect of promoting M2 macrophage polarization. In infected wound models, BE + NIR promotes wound healing by eradicating bacterial infection, attenuating ROS levels, promoting M2 macrophage polarization and accelerating re-epithelialization. Mechanistic insights from deep transcriptomic analyses on day 4 and day 10 confirm that the BE nanoplatform downregulates the expression of proinflammatory genes, upregulates the expression of wound-healing genes, and induces cell proliferation. Overall, this novel approach effectively integrates photothermal antibacterial properties, macrophage polarization regulation and anti-inflammatory effects, thereby creating an optimal immune environment and providing a comprehensive solution to the challenges of non-healing wounds caused by bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202501044 | DOI Listing |
ACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFStem Cells Int
August 2025
Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.
View Article and Find Full Text PDFFront Chem
August 2025
Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea.
In this work, a fluorescent probe, VanPI-CarE, with a vanillin-pyridine-imidazole core structure was developed for carboxylesterase (CarE) detection in macrophage polarization during bone homeostasis. The probe responded to CarE with a distinct fluorescence reporting signal at 490 nm upon excitation at 355 nm. Tests in solution showed the advantages of VanPI-CarE, including high sensitivity, excellent stability under various working conditions, high selectivity, and low cytotoxicity.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
Bioact Mater
December 2025
Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial.
View Article and Find Full Text PDF