98%
921
2 minutes
20
Proton transfer underpins number of chemical and biochemical processes, yet its sub-100 fs dynamics have rarely been captured in real time. Here, we report direct and time-resolved observation of ionizing radiation-induced proton transfer in a heteroaromatic hydrate: the pyrrole-water complex. Both the electron-impact and strong-field laser experiments create a locally and doubly charged pyrrole unit (CHN), which immediately (within 60 fs) donates a proton to the adjacent HO, generating deprotonated CHN and hydronium HO cations that subsequently undergo Coulomb explosion. The electron-impact experiments directly revealed initial states and provided dynamical insights through fragment ions and electron coincidence momentum imaging. The strong-field femtosecond laser experiments tracked the ultrafast dynamics of proton transfer; complementary ab initio calculations unraveled the dynamical details. The 50-60 fs proton transfer qualifies as one of the fastest acid-base reactions observed to date. This study offers a novel perspective on radiation-induced proton transfer in hydrated biomolecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214634 | PMC |
http://dx.doi.org/10.1038/s41467-025-61305-z | DOI Listing |
Nat Chem
September 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.
View Article and Find Full Text PDFChem Asian J
September 2025
School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.
Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.
View Article and Find Full Text PDFChemistry
September 2025
National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
We report a glycosyl radical-based, 1,2-trans-selective synthesis of C-aryl glycosides of 2-deoxy-2-amino-sugars from glycals via photoredox PCET/Ni dual catalysis. Mechanistic studies indicate that glycosyl radical formation involves the generation of an N-radical through a proton-coupled electron transfer (PCET) process, followed by its addition to the glycal. This protocol features: a) the use of an inexpensive organic photosensitizer and readily available glycals and aryl bromides; b) good functional group tolerance for both aryl bromides and glycal substrates; c) excellent diastereoselectivity, with exclusive formation of the 1,2-trans C-glycosides in all cases.
View Article and Find Full Text PDF