Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods. The ω-B97XD/TZVP level of theory was used to calculate bond lengths, interaction energies, infrared spectra, electron-hole analysis, and the energy barriers of ESIPT in SBFs. Our results confirmed the presence of intramolecular hydrogen bonds in both the ground and excited states in SBFs. Transition state calculation demonstrated that increasing the number of electron-withdrawing groups enhances hydrogen bonding interaction and facilitates ESIPT. However, excessive substitution saturates the electron-withdrawing effect, suppresses C═O basicity, and potentially induces conformational constraints, leading to a higher barrier. Our findings provide some important theoretical basis for the design of ESIPT fluorescent dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.70285DOI Listing

Publication Analysis

Top Keywords

excited-state intramolecular
8
intramolecular proton
8
proton transfer
8
esipt
6
theoretical investigation
4
investigation substituent
4
substituent effects
4
effects excited-state
4
transfer amino-functionalized
4
amino-functionalized benzene-derived
4

Similar Publications

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Recently photoinduced dynamic ligation in a metal-organic frameworks (MOFs) was reported, where a long-lived charge-transfer excited state (ca. 30 μs) featuring partial dissociation between the carboxylate linker and metal-based node was probed by time-resolved infrared (TRIR) spectroscopy. The study offers a new mechanistic perspective to evaluate the potential contribution from the excited state molecular configuration to the performance of MOF photocatalysts.

View Article and Find Full Text PDF

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.

View Article and Find Full Text PDF

Computer simulations play an essential role in the interpretation of experimental multiphoton absorption spectra. In addition, models derived from theory allow for the establishment of "structure-property" relationships. This work contributes to these efforts and presents the results of an analysis of two- and three-photon absorptions for a set comprising 450 conjugated molecules performed at the CAM-B3LYP/aug-cc-pVDZ level.

View Article and Find Full Text PDF