98%
921
2 minutes
20
The early and accurate detection of tumor markers is crucial for cancer diagnosis, prognosis, and treatment monitoring. Carbohydrate antigen 199 (CA199), as a key biomarker of pancreatic, gastric, and colorectal cancers, is widely used in the clinical management. The development of sensitive, rapid and cost-effective detection methods for CA199 is of paramount importance in improving early detection rates and patient outcomes. In this study, we present a novel photoelectrochemical (PEC) immunosensor based on a SnS/ZnCdS heterostructure designed for the ultrasensitive detection of CA199. The unique heterojunction between SnS and ZnCdS enhances photocurrent generation by effectively suppressing charge recombination and improving charge separation. Furthermore, the flower-like morphology of the heterostructure further boosts light absorption and photogenerated carrier transport, resulting in significantly enhanced sensor performance. This label-free PEC immunosensor exhibits outstanding stability, reproducibility and selectivity, with a broad detection range from 0.01 to 1000 U/mL and an ultra-low detection limit of 1.00 × 10 U/mL. These features demonstrate the potential of this sensor as a powerful tool for sensitive CA199 detection, offering promising applications in cancer diagnostics and monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187654 | PMC |
http://dx.doi.org/10.3389/fbioe.2025.1584456 | DOI Listing |
Bioelectrochemistry
August 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China. Electronic address:
Human epidermal growth factor receptor-2 (HER-2), a key biomarker in breast cancer, is critical for early diagnosis and prognosis evaluation. In this work, a label-free electrochemical immunosensor was developed for biomarker HER-2 detection based on PtSnCoNi hierarchical dendritic alloyed nanowires (PtSnCoNi HDNWs). These nanowires were synthesized via a co-reduction-triggered anisotropic growth strategy in oleylamine.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address:
Artificial cytoskeletons are constructed to study the structure and function of eukaryotic cells. Metal-organic frameworks (MOFs) provide a strong foundation for the construction of artificial cytoskeleton by encapsulating enzyme, yet challenges such as random enzyme distribution and poor catalytic efficiency, impede the development of artificial cytoskeleton technologies. Herein, a multilayer MOFs-based programmable artificial cytoskeleton was constructed through a heterogeneous interfacial growth method, utilizing hierarchical encapsulation of enzymes to facilitate tandem biocatalytic reactions.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
Background: Of the mycotoxins, aflatoxin is the most significant. The detection of aflatoxin B1 (AFB1) is crucial for ensuring food safety, as this highly carcinogenic toxin readily contaminates crops such as grains and nuts, and timely detection can effectively prevent associated health risks. The selection of luminophores is of paramount importance in the detection of ECL (electrochemiluminescence).
View Article and Find Full Text PDFMikrochim Acta
September 2025
The Second People's Hospital of Qingyang City, Qingyang City, Gansu, 745000, China.
An electrochemical immunosensor was successfully developed for evaluating traditional Chinese medicine (TCM)-induced cardiac toxicity by immobilizing heart-type fatty acid-binding protein (HFABP)-specific antibodies on an electrode surface modified with chitosan (CS)-functionalized metal-organic framework ZIF-8 and gold nanoparticles (AuNPs). Leveraging the excellent biocompatibility of AuNPs, the excellent stability and high surface area of ZIF-8, along with the strong specific recognition capability of HFABP antibodies, the sensor demonstrated superior performance. Under optimized experimental conditions, it achieved an ultra-low detection limit of 7.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Key Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Difenoconazole is a broad-spectrum triazole fungicide that widely used in fruits and vegetables. However, excessive use of difenoconazole may cause extremely adverse side effects on ecosystems and human health. Nevertheless, currently available detection methods require time-consuming, labor-intensive sample preparation, hindering the rapid screening of difenoconazole in agricultural products.
View Article and Find Full Text PDF