Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bistable structures, which leverage mechanical instability, have emerged as a promising paradigm in the development of robotic grippers, providing advantages including rapid response and low energy consumption. A critical limitation of existing bistable grippers, however, lies in their invariable energy barriers, which hinder the balance between compliant triggering and powerful grasping. In this study, we propose a bistable robotic gripper capable of in situ energy barrier modulation, inspired by the adaptive seed dispersal behavior of pods. This robotic gripper features an elastic curved beam-based architecture integrated with a motor-driven mechanism, enabling dynamic regulation of its energy landscape. This approach allows the energy barrier to be tuned over an order of magnitude during manipulation. In the low-barrier state, the robotic gripper initiates object interaction with a triggering force as low as 0.66 N, allowing for delicate manipulation. Upon state transition, instant energy barrier modulation (~300 ms) enhances grasping stability, achieving failure forces up to 12.08 N. This adaptive modulation strategy enables our robotic gripper to implement rapid, compliant, and powerful interaction. When incorporated into an unmanned aerial vehicle, the robotic gripper showcases reliable perching across diverse scenarios, highlighting the potential of energy barrier modulation to advance the adaptability and functionality of robotic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178156PMC
http://dx.doi.org/10.34133/research.0737DOI Listing

Publication Analysis

Top Keywords

energy barrier
20
robotic gripper
20
barrier modulation
16
instant energy
8
robotic
8
bistable robotic
8
robotic grippers
8
compliant triggering
8
triggering powerful
8
powerful grasping
8

Similar Publications

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) glycolysis presents an effective solution to address plastic pollution while promoting the utilization of renewable resources. It is highly important to gain in-depth insights into the identification of the well-defined active sites and the structure-activity relationships in PET glycolysis. Herein, PW@UiO-67 with different exposed crystal facets, i.

View Article and Find Full Text PDF

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

The energy landscape of folding in n-C14H30 described by a machine-learned potential.

J Chem Phys

September 2025

Yusuf Hamied Department of Chemistry. Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Folding and unfolding in molecules as simple as short hydrocarbons and as complicated as large proteins continue to be an active research field. Here, we investigate folding in n-C14H30 using both density functional theory (DFT)/B3LYP calculations of 27 772 local minima and a kinetic transition network calculated for a previously reported potential energy surface (PES) obtained by fitting roughly 250 000 B3LYP energies. In addition to generating a database of minima and the transition states that connect them, these calculations and the PES based on them have been used to develop a simple and accurate model for the energy landscape.

View Article and Find Full Text PDF