Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mild traumatic brain injury (mTBI) often leads to persistent cognitive and emotional symptoms, but the underlying neurobiological mechanisms remain unclear. Although previous studies have reported alterations in resting-state brain activity in mTBI patients, the findings have been inconsistent, and the genetic basis of these changes has not been fully explored. A coordinate-based voxel-wise meta-analysis was conducted to investigate resting-state brain activity changes in mTBI, using nine datasets from 374 patients and 302 healthy controls (HCs). Transcription-neuroimaging association analyses were performed using gene expression data from the Allen Human Brain Atlas (AHBA) to identify genes associated with brain activity alterations. Enrichment analyses were conducted to explore the biological functions of these genes. Compared to HCs, mTBI patients showed increased resting-state brain activity in the left insula and right fusiform gyrus, and decreased activity in the bilateral middle frontal gyrus. Transcription-neuroimaging association analyses identified 840 genes significantly correlated with these brain activity changes. Enrichment analyses revealed 15 biological processes significantly associated with the identified genes, primarily involving chemical synaptic transmission, multicellular organism development, and cell-cell signaling. These genes were also enriched in Pnoc+, Ntsr+, and Cort+ neurons and were expressed predominantly from the late fetal to early adulthood stages. Our findings suggest that alterations in resting-state brain activity in mTBI are linked to specific gene expression patterns, highlighting potential biological pathways involved in mTBI-related brain changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163347PMC
http://dx.doi.org/10.1002/hbm.70259DOI Listing

Publication Analysis

Top Keywords

brain activity
28
resting-state brain
20
activity changes
12
brain
10
activity
8
mild traumatic
8
traumatic brain
8
brain injury
8
alterations resting-state
8
activity mtbi
8

Similar Publications

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.

View Article and Find Full Text PDF

Unlabelled: Encephalitis is a potentially life-threatening condition with infectious or autoimmune aetiologies. Autoimmune encephalitis includes paraneoplastic variants associated with specific onconeural antibodies such as anti-Hu, frequently linked to malignancies. Herpes simplex virus type 1 (HSV-1) is the leading infectious cause in adults.

View Article and Find Full Text PDF

Intraoperative electrocorticography (ECoG) represents a crucial tool for improving seizure outcomes during epilepsy surgeries by assisting in localization of the epileptogenic zones. There is a shortage of information in the literature regarding single-center experiences and long-term outcomes after ECoG-guided surgeries. Data are particularly scarce from the Eastern Mediterranean Region.

View Article and Find Full Text PDF