Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Postmenopausal osteoporosis (PMOP) is a predominant form of clinical osteoporosis. It has led to significant health and social burdens for older patients. Reestablishing the balance between osteogenic and osteoclastic is a crucial strategy for treating PMOP. Curcumin (Cur), a naturally derived polyphenolic substance, has gained recognition as a viable option for treating osteoporosis. Despite its potential, the clinical use of Cur is hindered by its limited bioavailability and the presence of side effects. Nanoparticles modified with aspartic acid octapeptide (ASP8) exhibit a strong affinity for bone tissue, facilitating targeted delivery. This study presents novel acid-responsive zeolite imidazolate framework-8 (ZIF) nanoparticles modified with ASP8 and loaded with Cur (Cur@ZIF@ASP8, CZA). Upon delivery by this nanoparticle drug delivery system, Cur can effectively regulate bone homeostasis, offering a potential therapeutic strategy for osteoporosis. This study demonstrated that CZA nanoparticles could successfully transport Cur to bone tissue without significant toxicity. Furthermore, nanoparticles promote bone formation and inhibit osteoclast activity. They also modify the expression of related genes and proteins, such as OCN, ALP, CTSK and MMP9. Significant evaluations utilizing microcomputed tomography, Masson's staining, hematoxylin and eosin staining and immunofluorescence staining demonstrated that intravenous CZA administration in ovariectomized mice resulted in bone destruction while simultaneously reducing overall bone loss. In conclusion, CZA nanoparticles hold promise as a therapeutic option for osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122077PMC
http://dx.doi.org/10.1093/rb/rbaf028DOI Listing

Publication Analysis

Top Keywords

osteogenic osteoclastic
8
nanoparticles modified
8
bone tissue
8
cza nanoparticles
8
bone
6
osteoporosis
5
cur
5
nanoparticles
5
acid-responsive bone-targeting
4
bone-targeting nanoplatform
4

Similar Publications

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF

Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering.

Biomater Adv

September 2025

Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.

This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.

View Article and Find Full Text PDF

Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.

View Article and Find Full Text PDF

The Role of EphrinB2-EphB4 Signalling Pathway in Regeneration of Inflammatory Bone Defect.

J Cell Mol Med

September 2025

Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China.

The important role of the EphrinB2-EphB4 signalling pathway in bone remodelling has been demonstrated, while its effect on inflammatory bone defect regeneration remains poorly understood. This study was to assess the effect of EphB4-EphrinB2 signalling on inflammation-mediated bone defect repair in murine models. The modelling method of inflammation-mediated bone defect in mice was established by intraperitoneally injecting different concentrations of TNF-α.

View Article and Find Full Text PDF