98%
921
2 minutes
20
This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells. Synthetic ceramic biomaterials can be electrically polarized to mimic bone's natural electroactivity. Polarization improves surface wettability of biomaterial surfaces by increasing surface free energy, promoting serum protein adsorption and osteoblast adhesion while also influencing osteoclast differentiation. These surface modifications by polarization can be achieved without changing surface morphology or crystallinity and offer stable and long-lasting bioactivity at biointerface. This review details the physicochemical mechanisms underlying polarization, protein interaction, and cellular responses at biointerface. Understanding these interactions enables the rational design of electroactive ceramics that effectively guide bone regeneration. Polarized ceramics demonstrate potential as electroactive and long lifetime biomaterials in orthopedic, dental, and soft-tissue applications, suggesting a broad translational scope for regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2025.214495 | DOI Listing |
Biomater Adv
September 2025
Graduate School of Medical and Dental Science, Institute of Science Tokyo, 15-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; Advanced Central Research Organization, Teikyo University, 2-11-1, Kaga, Itabashi, Tokyo, 173-8605, Japan.
This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells.
View Article and Find Full Text PDFInt J Dent
August 2025
Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City 52242, Iowa, USA.
This study investigates light transmission through five types of computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramics, varying in thickness (0.50, 1.00, and 1.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Physics, Federal University of Sergipe, 49100-000 São Cristovão, SE, Brazil.
Hybrid coatings composed of crystalline monetite (CaHPO) and kefir-derived Dextran were synthesized on Ti6Al4V substrates using a low-temperature sol-gel-assisted route (≤80 °C), enabling biopolymer integration without thermal degradation. X-ray diffraction (XRD) confirmed the formation of triclinic monetite nanocrystals (∼152 nm), while Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) analyses verified the uniform incorporation of Dextran, particularly in the 4 wt % formulation, which yielded compact, homogeneous surfaces. Electrochemical evaluations in Fusayama artificial saliva revealed a substantial enhancement in corrosion resistance, with the open-circuit potential shifting from -0.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
Phosphate and phosphate invert glasses contain various elements, with a wide range of compositions. Recently, our group reported orthosilicophosphate glasses (SPGs) and the glass network structure composed of orthophosphates and orthosilicates crosslinked by cations. ZnO is an intermediate oxide that improves the chemical durability of glass.
View Article and Find Full Text PDFTissue Eng Part A
September 2025
Department of Anatomy, Faculty of Biomedical Science, University of Otago, Dunedin, New Zealand.
Bone-related pathologies due to injuries, trauma, and disease are a burden on the current health system that will only continue to grow as the population's life expectancy increases. The field of biomaterials aims to address these concerns by exploring, investigating, and optimizing bioregenerative grafts. In the context of bone regeneration, many biomaterials aim to achieve autograft-level regenerative properties, such as osteoconduction, osteoinduction, and low immunogenicity but also aim to address the disadvantages, such as the need for a secondary operation, donor site burden, and limited donor availability.
View Article and Find Full Text PDF