Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proton exchange membrane water electrolysis stands as a promising technology for sustainable hydrogen production, although its viability hinges on minimizing platinum (Pt) usage without sacrificing catalytic efficiency. Central to this challenge is enhancing the intrinsic activity of Pt while ensuring the stability of the catalyst. We herein present a MoTiC MXene-supported Pt nanocluster catalyst (MoTiC-Pt) that requires a minimal Pt content (36 μg cm) to function, yet remains highly active and stable. Operando spectroscopy and theoretical simulation provide evidence for anomalous charge transfer from the MXene substrate to Pt, thus generating highly efficient electron-rich Pt sites for robust hydrogen evolution. When incorporated into a proton exchange membrane electrolyzer, the catalyst affords more than 8700 h at 200 mA cm under ambient temperature with a decay rate of just 2.2 μV h. All the performance metrics of the present MoTiC-Pt catalysts are on par with or even surpass those of current hydrogen evolution electrocatalysts under identical operation conditions, thereby challenging the monopoly of high-loading Pt/C-20% in the current electrolyzer design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062374PMC
http://dx.doi.org/10.1038/s41467-025-59450-6DOI Listing

Publication Analysis

Top Keywords

hydrogen production
8
proton exchange
8
exchange membrane
8
hydrogen evolution
8
sustainable cost-efficient
4
hydrogen
4
cost-efficient hydrogen
4
production platinum
4
platinum clusters
4
clusters minimal
4

Similar Publications

Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.

View Article and Find Full Text PDF

Computational modeling for PPE filtration: Informed by material characterization, microbial penetration, and particle mechanics.

J Occup Environ Hyg

September 2025

Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.

This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.

View Article and Find Full Text PDF

Flexibility-Induced Robustness in Molecular Catalysts for Electrocatalytic CO Reduction.

J Am Chem Soc

September 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.

View Article and Find Full Text PDF

Preparation and Characterization of Polysaccharides From Grifola frondosa and Their Human Intestinal Flora-modulating Effect.

Chem Biodivers

September 2025

Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.

A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.

View Article and Find Full Text PDF

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF