98%
921
2 minutes
20
The urgent need for portable, sensitive, and accurate techniques to analyze multiple antibiotics is critical to mitigating the health risks associated with low-dose antibiotics coexposure-induced drug resistance, especially in infants. Emerging field-effect transistor (FET) biosensors are expected to realize the above requirement, but face challenges in terms of sensitivity and selectivity for complex solutions in practical applications. Here, we introduce a small-molecule coating strategy on carbon nanotube (CNT)-FET biosensor arrays to simultaneously block nonspecific adsorption and minimize Debye shielding effects, coupled with aptamer for antibiotics recognition through inkjet printing technology, which significantly improves the selectivity and sensitivity. The developed portable detection system with the FET biosensor chip displayed an ultrafast response time of 100 s, high sensitivity at the femtomolar level for both simultaneous detection and quantification of multiple antibiotics (kanamycin, oxytetracycline, and sulfaquinoxaline), a wide linear range from femtomolar to nanomolar concentrations, and exceptional accuracy, with a recovery rate of 91.1 to 107.5%. This work presents a biosensor array that can quantify various antibiotics at extremely low concentrations in milk samples, is superior to the enzyme-linked immunosorbent assay (ELISA) method, and can also be applied for the detection of other biomarkers, such as toxins and hormones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c00523 | DOI Listing |
ACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFChem Rec
September 2025
School of Physics and Mechanics, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China.
The development of sensors for monitoring breath acetone, a key biomarker for ketosis in diabetes mellitus, represents a critical frontier in medical diagnostics, promising a painless alternative to invasive blood tests. This review provides a comprehensive and critical evaluation of the state-of-the-art in acetone gas sensing technologies, including chemiresistive, optical, electrochemical, conductometric, and microwave platforms. We focus specifically on recent breakthroughs driven by advanced materials, analyzing how novel nanostructures from two-dimensional (2D) materials such as MXenes to porous metal-organic frameworks (MOFs) are engineered to push performance to clinically relevant parts-per-billion (ppb) sensitivity.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
Liquid-phase suspension array technology (SAT), based on optically encoded microspheres, overcomes limitations of traditional enzyme-linked immunosorbent assay (ELISA) and chemiluminescence detection techniques via meeting high-throughput and multiplexing demands in biosensing and diagnosis. It demonstrates significant advantages in terms of accuracy, speed, sensitivity, and multiplex detection capabilities, and has become an emerging research hotspot in the field of luminescent immunodiagnostics. With rapid advancement of nanotechnology and multi-functional nanomaterials, liquid-phase suspension array chips have achieved remarkable progresses in multiplex analysis capacity, encoding capacity, encoding efficiency, detection sensitivity, decoding methods, and application fields.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
David Price Evans Global Health and Infectious Diseases Group, Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7BE, UK.
Early diagnosis of Alzheimer's disease (AD) is hindered by the high cost, complexity, and centralization of current diagnostic platforms such as enzyme-linked immunosorbent assay (ELISA) and single-molecule array (SIMOA). Here, an integrated point-of-care (PoC) biosensing platform is reported based on redox-active polyphenol red molecularly imprinted polymers (pPhR MIPs) deposited on highly porous gold (HPG) electrodes for the ultrasensitive, reagent-free detection of phosphorylated tau 181 (p-tau 181) in undiluted plasma and serum. The unique electrochemical interface combines the signal-enhancing properties of HPG with the redox functionality of pPhR, eliminating the need for external redox probes.
View Article and Find Full Text PDFAnal Chem
September 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
To achieve high-throughput rapid monitoring of marine pathogens, this study developed an innovative single-electrode electrochemiluminescence (SEE) array biosensing imaging platform. For the first time, the highly luminous RuSiO-Au and Lu@MIL-NH with a strong nanoconfinement effect were integrated onto a single 10-well microelectrode array. By taking advantage of the extremely strong ECL signals, red-blue dual-color ECL imaging detection of and was achieved, which can be clearly distinguished by the naked eye on mobile phones.
View Article and Find Full Text PDF