98%
921
2 minutes
20
Biosafety hazards can trigger a host immune response after infection, invasion, or contact with the host. Whether infection with a microorganism results in disease or biosafety concerns depends to a large extent on the immune status of the population. Therefore, it is essential to investigate the immunological characteristics of the host and the mechanisms of biological threats and agents to protect the host more effectively. Emerging and re-emerging infectious diseases, such as the current coronavirus disease 2019 (COVID-19) pandemic, have raised concerns regarding both biosafety and immunology worldwide. Interdisciplinary studies involved in biosafety and immunology are relevant in many fields, including the development of vaccines and other immune interventions such as monoclonal antibodies and T-cells, herd immunity (or population-level barrier immunity), immunopathology, and multispecies immunity, i.e., animals and even plants. Meanwhile, advances in immunological science and technology are occurring rapidly, resulting in important research achievements that may contribute to the recognition of emerging biosafety hazards, as well as early warning, prevention, and defense systems. This review provides an overview of the interdisciplinary field of biosafety and immunology. Close collaboration and innovative application of immunology in the field of biosafety is becoming essential for human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894974 | PMC |
http://dx.doi.org/10.1016/j.bsheal.2024.07.005 | DOI Listing |
Front Immunol
September 2025
College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
Introduction: Galectin-9 is a β-galactoside-binding lectin that functions as a critical pattern recognition receptor (PRR) in the host immune system, initiating immune defense responses by recognizing and binding to pathogen-associated molecular patterns (PAMPs) on the surface of microorganisms. In this study, we identified and characterized a novel galectin-9 cDNA, designated CcGal-9, from Yellow River carp ().
Methods: The full-length CcGal-9 cDNA was cloned and sequenced, and its structural features were analyzed.
Pestic Biochem Physiol
November 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing 400715, China. Electronic address:
The innovative fungus-mite collaborative control strategy based on the high resistance of predatory mites to entomopathogenic fungi offers significant advantages. However, the resistance mechanisms of predatory mites to entomopathogenic fungi remain poorly characterized. Additionally, the pathogenic and lethal risks of broad-spectrum entomopathogenic fungi to predatory mites pose constraints on their application.
View Article and Find Full Text PDFVirol Sin
September 2025
State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.
Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.
View Article and Find Full Text PDFVet Microbiol
September 2025
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zheng
Eukaryotic translation initiation factor 4A3 (eIF4A3)-mediated RNA metabolism is essential for cellular homeostasis and viral replication. However, its role in regulating antiviral innate immunity during pseudorabies virus (PRV) infection remains unknown. Here, we demonstrate that eIF4A3 protein expression was significantly downregulated both in vitro and in vivo during PRV infection.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
Benign prostatic hyperplasia (BPH) presents a significant clinical challenge, with conventional therapies carrying substantial risks, including urinary retention, sexual dysfunction, and prolonged recovery. To address the urgent need for safer, ultra-minimally invasive alternatives, we developed a sonosensitizing nanoplatform using copper-manganese-doped mesoporous silica nanoparticles (Cu-Mn@SiO) for ultrasound-induced sonodynamic therapy (SDT). Here, we demonstrate that this innovative strategy provides highly effective and precisely targeted therapy for BPH.
View Article and Find Full Text PDF