Nanocluster-Induced Liquid-like Precursor Formation and Crystallization: In Situ Visualization and 3D Reconstruction.

J Am Chem Soc

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Revealing the crystallization mechanism of inorganic materials modulated by organic molecules has broad implications in biomineralization, crystallography, and materials science. However, directly visualizing the participation of organic molecules in the inorganic materials' crystallization process remains a significant challenge. Here, we introduce carboxyl-functionalized gold nanoclusters (Au NCs) as an alternative to polymers for investigating CaCO crystallization via the transient "Au NCs-induced liquid precursor" phase, similar to "polymer-induced liquid precursor". Exploiting the ultrasmall size, high density, and stable spontaneous fluorescence properties of Au NCs, this approach enables direct in situ observation of liquid precursor formation and dynamic association/dissociation using light microscopy. Results show that Au NCs are incorporated into the liquid precursor and the quantity of liquid precursor exhibits a nearly linear increase over time until the depletion of free Ca ions in solution due to crystallization of calcite. Subsequently, the dissolution of the liquid precursor provides ions for further crystal growth. The occlusion and 3D spatial distribution of Au NCs within CaCO throughout the crystallization process can also be visualized using confocal fluorescence microscopy, demonstrating preferential adsorption on specific lattice planes of CaCO. This study substantially enhances our comprehension of the differential growth rates of various crystallographic faces and the spatial distribution of Au NCs within the crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c17643DOI Listing

Publication Analysis

Top Keywords

liquid precursor
16
precursor formation
8
organic molecules
8
crystallization process
8
caco crystallization
8
liquid precursor"
8
spatial distribution
8
distribution ncs
8
crystallization
6
liquid
6

Similar Publications

In response to the challenges of nutrient limitations and low efficiency in synthesizing artificial humic acid (AHA) during the resource utilization of agricultural wastes, this study innovatively developed a process that integrates biogas slurry (BS) impregnation pretreatment with hydrothermal humification (HTH). Using steam-exploded corn straw (SES) as the raw material, the impregnation parameters were optimized (40 °C, liquid-to-solid ratio of 15:1, 18 h, 3 cycles), achieving an AHA yield of 40.61 %, which was over 15 % higher than that of the untreated group.

View Article and Find Full Text PDF

Carbon-based catalysts with free-standing structure are essential for rechargeable zinc-air battery as electrodes, which can avoid the side effects brought by organic binder. However, the current preparation methods still can be improved for faster preparation process and morphology control. In this study, we reported a fabrication strategy of self-standing carbon catalyst loaded with CoFe nanoparticles and carbon nanotube as air electrodes for liquid rechargeable zinc-air battery.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF

The concept of the circular bioeconomy is a carbon neutral, sustainable system with zero waste. One vision for such an economy is based upon lignocellulosic biomass. This lignocellulosic circular bioeconomy requires CO absorption from biomass growth and the efficient deconstruction of recalcitrant biomass into solubilized and fractionated biopolymers which are then used as precursors for the sustainable production of high-quality liquid fuels, chemical bioproducts and bio-based materials.

View Article and Find Full Text PDF

Significant enhancement of photoproduced reactive intermediates in liquid-like region in frozen surface water for micropollutant degradation.

Water Res

September 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:

Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).

View Article and Find Full Text PDF