98%
921
2 minutes
20
Cancer progression can be slowed down or halted via the activation of either endogenous or engineered T cells and their infiltration of the tumour microenvironment. Here we describe a deep-learning model that uses large-scale spatial proteomic profiles of tumours to generate minimal tumour perturbations that boost T-cell infiltration. The model integrates a counterfactual optimization strategy for the generation of the perturbations with the prediction of T-cell infiltration as a self-supervised machine learning problem. We applied the model to 368 samples of metastatic melanoma and colorectal cancer assayed using 40-plex imaging mass cytometry, and discovered cohort-dependent combinatorial perturbations (CXCL9, CXCL10, CCL22 and CCL18 for melanoma, and CXCR4, PD-1, PD-L1 and CYR61 for colorectal cancer) that support T-cell infiltration across patient cohorts, as confirmed via in vitro experiments. Leveraging counterfactual-based predictions of spatial omics data may aid the design of cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922765 | PMC |
http://dx.doi.org/10.1038/s41551-025-01357-0 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.
The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).
View Article and Find Full Text PDFHepatology
September 2025
Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.
Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
Background: Gastric cancer (GC) is a leading cause of cancer-related mortality; however, biomarkers predicting its immunotherapy resistance remain scarce. Vascular cell adhesion molecule ()-, an immune cell adhesion mediator, is implicated in tumor progression; however, its prognostic and immunomodulatory roles in GC remain unclear.
Methods: In this study, we analyzed expression and its clinical relevance in GC using RNA-sequencing data from The Cancer Genome Atlas.
J Pathol Inform
November 2025
Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial-stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
September 2025
Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
Objective: Atopic dermatitis (AD) is a common chronic inflammatory skin problem. Herein, we aimed to demonstrate the efficacy of matrine (MT) on AD and to reveal its mechanism.
Material And Methods: An AD model was induced topical administration of 1-fluoro-2,4-dinitorobenzene (DNFB).