98%
921
2 minutes
20
Lactate metabolism (LM) plays a crucial role in tumor progression and therapy resistance in non-small cell lung cancer (NSCLC). Several methods had been developed for NSCLC prognosis prediction based on lactate metabolism-related information. The existing methods for the construction of prognosis prediction models are mostly based on single models such as linear models, SVM, and decision trees. Prognosis biomarkers and prognosis prediction models based on this kind of methods often have limited prognostic performance. In this study, we proposed a novel methodology for constructing prognosis prediction model and identifying lactate-related prognostic biomarkers in NSCLC. We first screened for lactate metabolism-related malignant genes from the scRNA-Seq data of NSCLC malignant cells. We proposed a Cox elastic-net regression combined with genetic algorithm (GA-EnCox) to predict prognosis and optimize the selection of key biomarkers. We identified five key LM-related genes (LYPD3, KRT8, CCT6A, PSMB7, and HMGA1) that significantly correlated with patient prognosis in LUAD cohorts. The prognostic model constructed with these genes outperformed other currently popular models across multiple datasets, demonstrating stable predictive capability. Survival analysis based on bulk RNA-Seq data demonstrated that the low-risk group had significantly better overall survival compared to the high-risk group. Further analysis revealed that lactate metabolism-related prognosis risk might be associated with monocyte lineages such as macrophages and DC's infiltration and these prognosis biomarkers may indicate the therapeutic responses of immune checkpoint inhibitors for NSCLC patients. More importantly, we validated HMGA1 and KRT8 at protein level and their association with histologic grades, stages, and clinical outcomes in consistently treated in-house NSCLC cohorts. Finally, we experimentally validated one of the biomarkers, HMGA1, confirming its role in promoting malignant phenotypes of NSCLC. This study provides valuable insights into the role of lactate metabolism-related biomarkers and their impact on patient outcomes, it was expected to provide important reference value for prognosis assessment and personalized treatment decision of NSCLC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832748 | PMC |
http://dx.doi.org/10.1038/s41598-025-85620-z | DOI Listing |
Mol Med Rep
November 2025
Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China.
Lenvatinib, a multi‑target tyrosine kinase inhibitor, has been approved as the first‑line treatment for advanced liver cancer (LC). However, its efficacy is markedly hindered by the rapid emergence of drug resistance. The phosphatidylinositol 3 kinase/protein kinase B/hypoxia‑inducible factor‑1 α (PI3K/AKT/HIF‑1α) signaling axis represents a key oncogenic pathway that regulates diverse biological processes, including aerobic glycolysis, and is closely associated with tumor progression and therapeutic resistance.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2025
Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China.
Background: Atrial fibrillation (AF) is linked to modifications in T cell-mediated immunity. Although lactate metabolism influences T cell differentiation and function, its specific role in AF and associated immune processes remains inadequately understood.
Methods: We performed an integrated transcriptomic analysis utilizing both bulk and single-nucleus RNA sequencing data derived from hearts exhibiting AF and those in sinus rhythm.
Cell Death Differ
August 2025
Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.
Chronic kidney disease (CKD) progression is tightly associated with renal fibrosis, which is regulated by macrophage M2 polarization. The intestinal metabolite trimethylamine N-oxide (TMAO) has been reported to promote CKD, yet its underlying mechanism remains unclear. Here, we elucidated a mechanism wherein TMAO excreted through the kidneys alters the pyruvate metabolism of renal tubular epithelial cells, resulting in the production of lactic acid.
View Article and Find Full Text PDFTransl Cancer Res
July 2025
Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
Background: Previous studies often overlooked the roles of hypoxia and lactate metabolism in the breast cancer (BRCA) microenvironment. This study developed and validated a novel prognostic model for BRCA based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) using machine learning approaches. The aim was to identify molecular subtypes capable of predicting patient prognosis and treatment response, thereby facilitating precision medicine strategies for BRCA.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
April 2025
Cancer Research Institute, Xiangya School of Basic Medical Sciences, Central South University, Changsha 410078.
Objectives: Multiple myeloma (MM) is a highly heterogeneous hematologic malignancy, with disease progression driven by cytogenetic abnormalities and a complex bone marrow microenvironment. This study aims to construct a prognostic model for MM based on transcriptomic data and lipid metabolism related genes (LRGs), and to identify potential drug targets for high-risk patients to support clinical decision-making.
Methods: In this study, 2 transcriptomic datasets covering 985 newly diagnosed MM patients were retrieved from the Gene Expression Omnibus (GEO) database.