98%
921
2 minutes
20
Lenvatinib, a multi‑target tyrosine kinase inhibitor, has been approved as the first‑line treatment for advanced liver cancer (LC). However, its efficacy is markedly hindered by the rapid emergence of drug resistance. The phosphatidylinositol 3 kinase/protein kinase B/hypoxia‑inducible factor‑1 α (PI3K/AKT/HIF‑1α) signaling axis represents a key oncogenic pathway that regulates diverse biological processes, including aerobic glycolysis, and is closely associated with tumor progression and therapeutic resistance. However, the specific contribution of the PI3K/AKT/HIF‑1α pathway and aerobic glycolysis to lenvatinib resistance in LC, as well as the potential mechanistic interplay between these processes, remains inadequately elucidated. In the present study, colony formation, flow cytometry and Transwell assays were performed to evaluate the proliferative, apoptotic and invasive capabilities of LC cells. Cell aerobic glycolysis was assessed by detecting glucose uptake, lactate production, intracellular ATP levels and the expression of key glucose metabolism‑related genes. Compared with their parental counterparts, lenvatinib‑resistant (LR) Huh7 and HepG2 cells exhibited an enhanced glycolytic phenotype, characterized by increased glucose uptake, elevated lactate production, higher intracellular ATP levels and upregulated expression of key glycolysis‑related genes. Notably, aberrant activation of the PI3K/AKT/HIF‑1α signaling pathway was observed in LR LC cells. LY294002, a specific PI3K inhibitor, effectively inhibited the PI3K/AKT/HIF‑1α pathway and glycolytic activity in LR cells. Co‑administration of LY294002 with lenvatinib markedly suppressed the PI3K/AKT/HIF‑1α pathway and attenuated the glycolytic activity of Huh7‑LR/HepG2‑LR cells. Moreover, this combination treatment inhibited proliferation and invasion while inducing apoptosis and G/G phase cell cycle arrest in LR cells. This evidence indicated that inhibition of the PI3K/AKT/HIF‑1α signaling pathway effectively restored the sensitivity of LR cells to lenvatinib. The findings in the present study demonstrate that aberrant activation of the PI3K/AKT/HIF‑1α pathway is required to enhance glycolysis and confers resistance to lenvatinib in LC. The combination of LY294002 with lenvatinib offers a promising strategic approach for overcoming resistance and enhancing the clinical efficacy of lenvatinib in patients with LC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2025.13666 | DOI Listing |
Biol Trace Elem Res
September 2025
Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science
The uncharted effects of cadmium and cesium on circadian syndrome (CircS), an emerging circadian rhythm disorder drawing considerable attention, and underlying mechanisms warrant exigent elaboration. Data of 11141 subjects from National Health and Nutrition Examination Survey 2005-2018 were incorporated to investigate separate-, joint-/interaction-, and mixture-effects of urinary cadmium and cesium on prevalent CircS risk exploiting survey weight regression and quantile g-computation. The underlying mechanisms were probed by network toxicological analysis.
View Article and Find Full Text PDFNeurotherapeutics
September 2025
Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit
Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
National Centre for Biological Science - Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065, India.
Int Immunopharmacol
September 2025
The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. Electronic address:
Pestic Biochem Physiol
November 2025
College of Plant Protection, Yangzhou University, 225009 Yangzhou, PR China. Electronic address:
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a typical insecticide-induced resurgence rice pest that causes severe damage to rice in Asian countries. Previous studies have shown that the fungicide Jinggangmycin (JGM), used to control rice sheath blight disease, can stimulate BPH fecundity; however, the molecular mechanism remains to be further explored. In this study, based on transcriptomic analysis, we found that the PI3K-Akt signaling pathway was significantly enriched in BPH after feeding on JGM-treated rice, where the NlPR-L and NlABD4-L genes were significantly upregulated.
View Article and Find Full Text PDF