98%
921
2 minutes
20
The present study investigated whether replacing dietary rice straw with peanut vine (PEV) and silage (BPS) reduces the use of soybean meal and explored its effects on the growth performance, blood biochemical indicators, serum metabolomics, and meat quality of fattening bulls. Forty-five Simmental crossbred bulls (initial body weight = 484.29 ± 8.49 kg) were randomly allotted into three dietary treatment groups ( = 15): (1) CON, 5% rice straw (DM basis); (2) PEV, 5% peanut vine (DM basis); and (3) BPS, 5% silage (DM basis). The remaining roughage for all three treatment groups was supplemented with 25% corn silage (DM basis). The experiment lasted for 123 d, with the first 14 d serving as an adaptive period. Throughout the experiment, dietary BPS decreased the average daily dry matter intake ( < 0.001) and feed cost ( < 0.001). Serum metabolomics analysis showed that PEV affected the phenylalanine, tyrosine, and tryptophan biosynthesis pathways ( = 0.021) and lysine degradation pathway ( = 0.042), whereas BPS affected the phenylalanine, tyrosine and tryptophan biosynthesis pathways ( = 0.004), lysine degradation pathway ( = 0.012), and serotonergic synapse pathway ( < 0.001). Regarding meat quality, the redness ( = 0.025) and hue angle values ( < 0.001) of the longissimus dorsi muscle were lower in the BPS group than in the CON and PEV groups. The yellowness of the longissimus dorsi muscle was lower in the BPS group than in the PEV group ( = 0.024), and the shear force was lower in the PEV group than in the BPS group ( = 0.014). However, lysine content in beef was higher in the BPS group than in the CON group ( = 0.005). In conclusion, replacing rice straw with PEV and BPS reduced the use of soybean meal but had no adverse effects on growth performance. BPS affected the amino acid metabolism of bulls, thus decreasing feed intake and increasing the lysine content in meat. The PEV group showed better meat quality than the BPS group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821392 | PMC |
http://dx.doi.org/10.1016/j.aninu.2024.11.013 | DOI Listing |
Ultrason Sonochem
September 2025
College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan.
Burning rice straw contribute to Atmospheric Pollution, which makes it unsustainable in the long-run, but are still opted by farmers due to faster removal of residue. Lignocellulose Degrading Microorganisms, facilitating sustainable management, may accelerate the breakdown of various crop residues. A study comprised of twenty-one treatments including fungal strains, bacterial strains and microbial consortia.
View Article and Find Full Text PDFJ Dairy Sci
September 2025
Department of Dairy Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. Electronic address:
This study investigated how different dietary roughages, Napier-Pakchong (NP), jumbo sorghum (JB), and rice straw (RS) fed to Holstein-Friesian (HF) crossbred cows affect the nutritional, techno-functional, and sensory properties of mozzarella cheese under tropical conditions in Bangladesh. Iso-nitrogenous (≈12.54% CP) and iso-energetic (ME ≈2.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St. Machar Drive., Aberdeen, AB24 3UU, UK.
Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.
View Article and Find Full Text PDFBackground: Sotrovimab is a neutralising monoclonal antibody targeting the SARS-CoV-2 spike protein. We aimed to evaluate the efficacy and safety of sotrovimab in the RECOVERY trial, an investigator-initiated, individually randomised, controlled, open-label, adaptive platform trial testing treatments for patients admitted to hospital with COVID-19.
Methods: Patients admitted with COVID-19 pneumonia to 107 UK hospitals were randomly assigned (1:1) to either usual care alone or usual care plus a single 1 g infusion of sotrovimab, using web-based unstratified randomisation.