98%
921
2 minutes
20
SLC26A6, a member of the SLC26 family of multifunctional anion transporters, has been particularly enigmatic because of its multiple modes of transport, its expression in organs that are difficult to study physiologically, and the lack of specific antibodies and inhibitors. This has recently changed. SLC26A6 is expressed in the human pancreas, kidney, intestine, heart and some other organs and is involved in fluid absorption, anion secretion, regulation of intracellular pH and elimination of waste products such as oxalate. This review will focus on three topics: Firstly, a molecular structure of human SLC26A6 has recently been obtained by cryo-electron microscopy. Structure-function studies of the reconstituted SLC26A6 in proteoliposomes suggested a 1:1 stoichiometry, resulting in electroneutral Cl/HCO exchange and electrogenic Cl/oxalate exchange. How do these data help to understand the published functional studies? Secondly, whole exon sequencing of a kidney stone cohort from the United Kingdom database revealed a dominant negative SLC26A6 mutation in a patient with enteric hyperoxaluria, oxalate kidney stones and a low calcium diet. How does this finding fit with previous genetic studies in mice and humans of SLC26A6 gene mutations? Thirdly, progress has been made in identifying specific inhibitors for SLC26A6. Where might this be of clinical relevance?
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821980 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1536864 | DOI Listing |
J Am Chem Soc
September 2025
College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.
The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.
View Article and Find Full Text PDFFood Res Int
November 2025
Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
Stable, treatment-resistant Cu complexes in practical wastewater are frequently neglected. Positively charged lysozyme amyloid fibrils (AF), however, exhibit unexplored potential for their adsorption. This study engineered an amyloid fibril-chitosan composite (AF-CS) xerogel and evaluated its adsorption performance in three systems: free Cu, Cu-Citrate binary, and Cu-EDTA binary.
View Article and Find Full Text PDFAdv Mater
September 2025
Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, China.
Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Shenzhen Research Institute of Nanjing University, Nanjing University, Shenzhen, 518057, People's Republic of China.
Zn-I batteries have emerged as promising next-generation energy storage systems owing to their inherent safety, environmental compatibility, rapid reaction kinetics, and small voltage hysteresis. Nevertheless, two critical challenges, i.e.
View Article and Find Full Text PDF