98%
921
2 minutes
20
Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated. In this study, we present a multifunctional nanoplatform, Zn-A4@FRT, featuring a integrated molecule Zn-A4, utilizing tumor-actively targeted ferritin delivery platforms to modulate the TME. In this system, Zn-A4, synthesized from zinc porphyrin (ZPP) and benzaldehyde nitrogen mustellin (BNM), serves dual roles in photo/chemodynamic therapy. Under 660 nm near-infrared laser irradiation, Zn-A4@FRT activates ZPP photosensitizers to produce toxic ROS by depleting dissolved oxygen in cancer cells, while a Fenton-like reaction enhances ROS generation. This system also induces ferroptosis through lipid peroxide accumulation, glutathione depletion, and glutathione peroxidase 4 downregulation, thereby improving the efficacy of chemodynamic therapy (CDT) and PDT in breast cancer treatment. This multifaceted strategy highlights the potential of Zn-A4@FRT as an effective approach for comprehensive cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c18072 | DOI Listing |
Crit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China.
An integrated miniature time-of-flight mass spectrometer (TOF-MS) system coupled with a pocket-size 3D-printed laser-induced acoustic desorption (LIAD) source is described. This 3D-printed LIAD source utilizes only a miniature deceleration motor to achieve two-dimensional motion of the target surface, simplifying the source structure and improving the long-term stability of mass spectrometry measurements. It has been successfully applied to analyze the model molecule creatinine and ingredients in an energy beverage (Red Bull), where main natural nutrients were clearly identified.
View Article and Find Full Text PDFNano Lett
September 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
Sorafenib, a clinically approved multityrosine kinase inhibitor, exhibits poor aqueous solubility, which limits its bioavailability and therapeutic efficacy. In this study, we introduce a solvent-directed self-assembly strategy to modulate the nanostructure of sorafenib without the use of external carriers or complex formulation techniques. In pure water, sorafenib forms large lamellar aggregates, whereas in 30% methanol-water mixtures, it self-assembles into uniform spherical particles approximately 450 nm in diameter.
View Article and Find Full Text PDFPLoS One
September 2025
Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea.
The oral epithelial barrier plays a crucial role in maintaining oral health by protecting against microbial invasion and mechanical stress while regulating selective permeability. Disruption of this barrier contributes to inflammation and the development of oral diseases such as gingivitis and periodontitis. Pinoresinol, a lignan with antioxidant, antimicrobial, and anti-inflammatory properties, has demonstrated health benefits in systemic diseases; however, its effects on oral epithelial barrier integrity remain unclear.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, SJTU-Fudan-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai,
Catharanthus roseus contains nearly 200 bioactive monoterpenoid indole alkaloids (MIAs) that are effective in treating cancer and other diseases. Ethylene plays a significant role in enhancing MIA biosynthesis, and we have found that it greatly induces the accumulation of anhydrovinblastine. However, the regulatory mechanisms underlying this process are not yet fully understood.
View Article and Find Full Text PDF