Transketolase attenuates the chemotherapy sensitivity of glioma cells by modulating R-loop formation.

Cell Rep

Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan Univ

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma (GBM) is a highly lethal malignant brain tumor with poor survival rates, and chemoresistance poses a significant challenge to the treatment of patients with GBM. Here, we show that transketolase (TKT), a metabolic enzyme in the pentose phosphate pathway (PPP), attenuates the chemotherapy sensitivity of glioma cells in a manner independent of catalytic activity. Mechanistically, chemotherapeutic drugs can facilitate the translocation of TKT protein from the cytosol into the nucleus, where TKT physically interacts with XRN2 to regulate the resolution and removal of R-loops. Depletion of TKT leads to increased R-loop accumulation and genome instability, increasing the susceptibility of glioma cells to chemotherapy. In conclusion, our study reveals a non-metabolic function of TKT in regulating R-loop dynamics, genome instability, and chemotherapy sensitivity in gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.115142DOI Listing

Publication Analysis

Top Keywords

chemotherapy sensitivity
12
glioma cells
12
attenuates chemotherapy
8
sensitivity glioma
8
genome instability
8
tkt
5
transketolase attenuates
4
chemotherapy
4
cells modulating
4
modulating r-loop
4

Similar Publications

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Singlet oxygen (O) plays a crucial role in cancer chemotherapy and ROS biology, driving the need for highly specific probes to monitor its dynamics in real time. Herein, we developed the ratiometric fluorescent probe NAP-t-PY, utilizing a 2-pyridone recognition unit. The probe's 1-methyl-3-benzyl-2-pyridone moiety reacts specifically with O [4 + 2] cycloaddition, forming the endoperoxide NAP-t-PY-EP.

View Article and Find Full Text PDF

Cereblon upregulation overcomes thalidomide resistance in multiple myeloma through mitochondrial functional reprogramming.

BMB Rep

September 2025

Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Center, Inje University, Busan 47392, Korea; Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, K

Patients with multiple myeloma develop resistance to thalidomide during therapy, and the mechanisms to counteract thalidomide resistance remain elusive. Here, we explored the interaction between cereblon and mitochondrial function to mitigate thalidomide resistance in multiple myeloma. Measurements of cell viability, ATP production, mitochondrial membrane potential, mitochondrial ROS, and protein expression via western blotting were conducted in vitro using KSM20 and KMS26 cells to assess the impact of thalidomide on multiple myeloma.

View Article and Find Full Text PDF

m6A-Mediated Methylation Patterns and Their Association With Obstructive Sleep Apnea in Lung Adenocarcinoma.

Cancer Rep (Hoboken)

September 2025

Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou, Jiangsu, China.

Background: Epigenetic regulation significantly affects immune responses in lung adenocarcinoma (LUAD). However, the role of RNA N6-methyladenosine (m6A) modification, especially in obstructive sleep apnea-hypopnea syndrome (OSAHS) within LUAD, is not well understood.

Methods: This study examined m6A modification patterns in 973 LUAD patients using 23 regulatory genes.

View Article and Find Full Text PDF

Mevalonate Metabolic Reprogramming Drives Cisplatin Resistance in Bladder Cancer: Mechanisms and Therapeutic Targeting.

Protein Pept Lett

September 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou730000, Gansu, China.

Introduction: Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.

Methods: Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF