A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cereblon upregulation overcomes thalidomide resistance in multiple myeloma through mitochondrial functional reprogramming. | LitMetric

Cereblon upregulation overcomes thalidomide resistance in multiple myeloma through mitochondrial functional reprogramming.

BMB Rep

Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Center, Inje University, Busan 47392, Korea; Department of Health Science and Technology, College of Medicine, Inje University, Busan 47392, K

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patients with multiple myeloma develop resistance to thalidomide during therapy, and the mechanisms to counteract thalidomide resistance remain elusive. Here, we explored the interaction between cereblon and mitochondrial function to mitigate thalidomide resistance in multiple myeloma. Measurements of cell viability, ATP production, mitochondrial membrane potential, mitochondrial ROS, and protein expression via western blotting were conducted in vitro using KSM20 and KMS26 cells to assess the impact of thalidomide on multiple myeloma. An in vivo analysis using xenografted multiple myeloma cells in BALB/c nude mice revealed that KMS20 cells were resistant to thalidomide, whereas KMS26 cells were sensitive. Overexpression of CRBN in a KMS20 xenograft model reversed its resistance to thalidomide, reduced tumor growth, and significantly extended the survival rate of the mice. Overexpression of CRBN in thalidomide-resistant KMS20 cells during thalidomide treatment led to effective cell death through the modulation of mitochondrial function and protein expression, mediated by AMPKα1 signaling. Conversely, both genetic and pharmacological knockdowns of CRBN rendered KMS26 cells resistant to thalidomide, indicating that CRBN level modulation directly influences mitochondrial functions. These findings propose that targeting cereblon offers a promising strategy in overcoming thalidomide resistance in multiple myeloma through mitochondrial reprogramming.

Download full-text PDF

Source

Publication Analysis

Top Keywords

multiple myeloma
24
thalidomide resistance
16
resistance multiple
12
kms26 cells
12
thalidomide
10
myeloma mitochondrial
8
resistance thalidomide
8
mitochondrial function
8
protein expression
8
kms20 cells
8

Similar Publications