98%
921
2 minutes
20
Heavy metals (HMs) represent a persistent and significant threat to aquatic ecosystems. Hydroxyapatite (HAp) has emerged as a utilized material in the remediation of environmental HMs, owing to its exceptionally high porosity, expansive surface area, and the presence of three-dimensional ordered channels. An in-depth study of the synthesis strategy of HAp and its adsorption properties can help reduce the cost of remediating HMs in aquatic environments and alleviate the water shortage. In this paper, we reviewed 466 works of literature on the adsorption of heavy metals by HAp based on the Web of Science database between 2013 and 2023 that focused on the adsorption of heavy metals by HAp. We meticulously synthesized the findings related to the synthesis conditions-namely precipitation, hydrothermal, and calcination-as well as the characterization parameters and the adsorption capacity of HAp for heavy metals such as Pb, Cd, Cu, Zn, and Ni. Synthesizing advanced materials by reducing the number of experiments is essential to accelerate material development. Machine learning (ML) holds significant promise in material discovery and performance enhancement. We have consolidated the qualitative and quantitative relationships between HAp synthesis conditions, characterization parameters, and heavy metal adsorption capacity across previous studies, utilizing both the Statistical Package for Social Sciences (SPSS) and ML techniques. Building on the most recognized heavy metal adsorption mechanisms, we have evaluated the influence of characterization parameters on adsorption performance. We have outlined the optimal synthetic conditions for enhancing the adsorption of Pb, Cd, Cu, Zn, and Ni through precipitation, hydrothermal, and calcination methods, offering a practical guide for the targeted synthesis of HAp tailored to specific heavy metal adsorption capacities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136525 | DOI Listing |
Analyst
September 2025
School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 200433, China.
Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; National Key Laboratory of Uranium Resources Prospecting and Nuclear Remote Sensing, East China University of Technology, Nanchang 330000, China.
Despite China being the world's largest producer of non-ferrous metals, a comprehensive understanding of heavy metal pollution from this industry is still lacking. This study examines the spatial coupling between heavy metal (Cd, Hg, As, Pb, and Cr) emission hotspots in China's non-ferrous metal mining industry (NFMMI), non-ferrous metal smelting and processing industry (NFMSPI) and environmental media- sensitive hotspots (water body density, cultivated land concentration, and atmospheric PM2.5) to characterize the multi-media pollution risks.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, College of Forestry & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.
Pollutants from industrial emissions and traffic accumulate in urban soils as road dust, carrying heavy metals (HMs) posing ecological and health risks. Magnetic susceptibility (MS), sensitive to ferromagnetic minerals, enables rapid HM contamination assessment. This study developed the Modified Dual-Threshold MS Evaluation Plot for Soil Contamination (M-Plot) using χ and χ% indices.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile.
Changes in consumption patterns, urbanization, and industrialization have led to the generation of large volumes of municipal solid waste (MSW), posing threats to environmental sustainability. This study aimed to compost the organic fraction of municipal solid waste (OFMSW) using three composting methods: windrow (WC), pit (PC), and drum composting (DC). Distilled water was used in compost preparation and sample analysis.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
Polyesters, with their tunable chemical structures and environmental sustainability, have drawn growing attention as solid polymer electrolytes for next-generation solid-state lithium metal batteries (SSLMBs). Through a comprehensive experimental and theoretical study involving the systematic variation of carbon chain lengths in the flexible (diol) and coordinating (diacid) segments, along with selective fluorination at distinct positions along the polymer backbone, 18 types of polyester are fabricated and demonstrate that fluorination at the coordinating segment significantly enhances ionic conductivity by suppressing crystallinity. In contrast, fluorination at the flexible segment reduces ionic migration barriers by providing more homogeneous coordinating sites, thereby improving the lithium-ion transference number, despite increasing chain rigidity and a reduction in overall ionic conductivity.
View Article and Find Full Text PDF