98%
921
2 minutes
20
As a group of emerging contaminants of global concern, tire additives and their transformation products (TATPs) are causing a severe threat to aquatic ecosystems, particularly the highly lethal effects of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on certain fish species. Yet, the contamination status of TATPs in the lake ecosystems remains largely uncharacterized. This study conducted the first nationwide monitoring of the distribution characteristics of TATPs in 208 lake sediments collected from five lake regions across China. All the 13 TATPs were identified in lake sediments, with the total levels varying between 1.4 and 1355 ng/g, and 4-hydroxydiphenylamine (4-OH-PPD) as the most dominant. The total levels of TATPs decreased in the following order: Yunnan-Guizhou Plateau > Inner Mongolia-Xinjiang Region, Eastern Plain > Qinghai-Tibet Plateau, and Northeast Plain (p < 0.05). The geographical distribution of TATPs in lake sediments was significantly driven by total organic carbon content, temperature, and population density. N,N'-di-2-naphthyl-p-phenylenediamine, 6PPD-Q, N,N'-diphenyl-p-phenylenediamine, and 4-OH-PPD belonged to high-priority contaminants. Our study emphasizes that emerging pollutant TATPs place significant pressure on lake ecosystems and deserve urgent attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.109139 | DOI Listing |
Environ Sci Technol
September 2025
Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210094, China.
Tracing footprint and risk of microplastics and microfibers is crucial to managing plastic and fiber waste. We identified microfibers from microplastics, quantitatively apportioned the sources of microplastics and microplastics in 102 lakes across China by field work, and developed a novel index (IMRI) to assess the risk based on human footprint and the abundance, size, shape, color, and residual monomers and chemical additives. The abundance in the sediments of these lakes ranged from 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
CanmetMINING, Natural Resources Canada, Ottawa, ON, Canada. Electronic address:
Acid mine drainage (AMD) is a serious environmental problem at legacy and active mine sites around the world. Climate associated drought and rewetting events can increase the severity of AMD impacts through oxidation and release of stored metal(loid)s and acidity from contaminated sediments. The area surrounding Sudbury, Ontario, with its massive mining and smelting complexes, appears especially vulnerable to drought-driven effects.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:
Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China.
Current antibiotic-resistant bacteria (ARB) disinfection techniques commonly rely on large dosages of oxidants, resulting in the presence of considerable amounts of residuals and toxic disinfection byproducts (DBPs) in water. Herein, we propose a highly effective ARB disinfection approach via activating an ultralow concentration (10 μM) of chlorite (ClO) by naturally abundant sunlight to generate various reactive species (i.e.
View Article and Find Full Text PDFWater Res
August 2025
Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, PR China.
Shallow lakes are increasingly subjected to pronounced alterations in hydrological regimes and exacerbated nutrient stoichiometric imbalances due to climate change and anthropogenic factors. Understanding the interactions between watershed eco-hydrological processes and lake systems, particularly their impact on nutrient balance dynamics deserves further investigation. Employing seasonal-trend decomposition (STL), Copula modeling, and the Lindeman-Merenda-Gold (LMG) algorithm, this study systematically analyzed eco-hydrological processes in Poyang Lake basin and identified hydrological regime as the key factor governing lake nutrient balance.
View Article and Find Full Text PDF