Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyclin-dependent kinase 7 (CDK7) is a key regulator of the cell cycle and transcription, making it a promising target for cancer therapy. Although current CDK7 inhibitors have improved in their selectivity and druglike properties, CDK7 inhibitors have failed to progress through clinical development due to severe gastrointestinal and hematotoxic side effects. To mitigate these limitations, we have developed novel, macrocyclic, noncovalent CDK7 hit compounds and using a macrocyclization platform that has optimized these compounds from SY-5609, a leading clinical asset. We conducted extensive structure-activity relationship (SAR) studies to improve their potency, enhance oral bioavailability, and reduce intestinal distribution, which resulted in compound . Compound exhibits potent activity, good ADME properties, and robust antitumor activity in xenograft models as a monotherapy. Notably, compound with lower basicity demonstrated improved Caco-2 permeability, reduced blood/plasma ratio, and reduced intestinal distribution in rats, thus mitigating gastrointestinal and hematotoxic side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c02098DOI Listing

Publication Analysis

Top Keywords

novel macrocyclic
8
macrocyclic noncovalent
8
noncovalent cdk7
8
cancer therapy
8
cdk7 inhibitors
8
gastrointestinal hematotoxic
8
hematotoxic side
8
side effects
8
intestinal distribution
8
cdk7
5

Similar Publications

Harnessing Radical-Based Dynamic Covalent Chemistry and Supramolecular Synthon for Directional Self-Assembly.

J Am Chem Soc

September 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.

View Article and Find Full Text PDF

Proteasome inhibitors are effective in treating hematologic cancers but have limited utility in brain tumors due to poor blood-brain barrier (BBB) penetration and metabolic instability. In this study, we developed novel macrocyclic peptide epoxyketone inhibitors with improved drug-like properties. Compounds were screened for cytotoxicity against brain cancer cell lines, permeability (PAMPA-BBB and Caco-2), and metabolic stability.

View Article and Find Full Text PDF

Cycloparaphenylenes (CPPs) possess radial π-conjugation structures and host-guest capability. Herein, we report the synthesis of novel CPP analogues featuring a flexible ,-diphenyldihydrodibenzo[a, c]phenazine (DPAC) unit. These molecules feature adaptive cavities that enable efficient host-guest interactions with species such as [2,2]PCP.

View Article and Find Full Text PDF

Calix[]azanediyldibenzoate: Intramolecular Hydrogen Bond-Assisted Synthesis, Acidichromism, and Oriented Self-Assembly.

Org Lett

September 2025

School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.

Here, intramolecular hydrogen bond (IMHBs)-induced rigidity is used for the first time to synthesize macrocyclic arenes. Calix[]azanediyldibenzoates (C[]A, where = 3, 4, or 5) are synthesized through a one-step condensation reaction between dimethyl 2,2'-azanediyldibenzoate and paraformaldehyde. Compared to the monomer, the macrocycles exhibit a fast and significant acidochromic response due to the intramolecular charge transfer that is boosted by the synergistic effect of their adsorption and protonation.

View Article and Find Full Text PDF

Novel triazolyl macrocycles incorporating glycolipids: a new protocol.

Carbohydr Res

November 2025

Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Six new macrocycles incorporating glycolipids containing one triazole ring in their structures were synthesized via intramolecular macrocyclic closure. The synthesis strategy is based on the different reactivities of primary and secondary hydroxyl groups on the monosaccharides. The protecting of hydroxyls on 4,6-positions by benzylidene, followed by benzylation of 2,3-positions and removal of the benzylidene, selectively left over the free secondary and primary hydroxyl on 4- and 6-carbons, respectively.

View Article and Find Full Text PDF